Advertisement

Journal of High Energy Physics

, 2015:38 | Cite as

New ambitwistor string theories

  • Eduardo Casali
  • Yvonne Geyer
  • Lionel Mason
  • Ricardo Monteiro
  • Kai A. Roehrig
Open Access
Regular Article - Theoretical Physics

Abstract

We describe new ambitwistor string theories that give rise to the recent amplitude formulae for Einstein-Yang-Mills, (Dirac)-Born-Infeld, Galileons and others introduced by Cachazo, He and Yuan. In the case of the Einstein-Yang-Mills amplitudes, an important role is played by a novel worldsheet conformal field theory that provides the appropriate colour factors precisely without the spurious multitrace terms of earlier models that had to be ignored by hand. This is needed to obtain the correct multitrace terms that arise when Yang-Mills is coupled to gravity.

Keywords

Scattering Amplitudes Field Theories in Lower Dimensions Field Theories in Higher Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [INSPIRE].zbMATHCrossRefADSGoogle Scholar
  2. [2]
    R. Roiban, M. Spradlin and A. Volovich, On the tree level S matrix of Yang-Mills theory, Phys. Rev. D 70 (2004) 026009 [hep-th/0403190] [INSPIRE].MathSciNetADSGoogle Scholar
  3. [3]
    F. Cachazo and D. Skinner, Gravity from rational curves in twistor space, Phys. Rev. Lett. 110 (2013) 161301 [arXiv:1207.0741] [INSPIRE].CrossRefADSGoogle Scholar
  4. [4]
    F. Cachazo, L. Mason and D. Skinner, Gravity in twistor space and its Grassmannian formulation, SIGMA 10 (2014) 051 [arXiv:1207.4712] [INSPIRE].MathSciNetGoogle Scholar
  5. [5]
    D. Skinner, Twistor strings for N = 8 supergravity, arXiv:1301.0868 [INSPIRE].
  6. [6]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles: scalars, gluons and gravitons, JHEP 07 (2014) 033 [arXiv:1309.0885] [INSPIRE].CrossRefADSGoogle Scholar
  7. [7]
    F. Cachazo, S. He and E.Y. Yuan, Scattering of massless particles in arbitrary dimensions, Phys. Rev. Lett. 113 (2014) 171601 [arXiv:1307.2199] [INSPIRE].CrossRefADSGoogle Scholar
  8. [8]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D 90 (2014) 065001 [arXiv:1306.6575] [INSPIRE].ADSGoogle Scholar
  9. [9]
    E. Witten, Parity invariance for strings in twistor space, Adv. Theor. Math. Phys. 8 (2004) 779 [hep-th/0403199] [INSPIRE].zbMATHMathSciNetCrossRefGoogle Scholar
  10. [10]
    L. Mason and D. Skinner, Ambitwistor strings and the scattering equations, JHEP 07 (2014) 048 [arXiv:1311.2564] [INSPIRE].CrossRefADSGoogle Scholar
  11. [11]
    N. Berkovits, Infinite tension limit of the pure spinor superstring, JHEP 03 (2014) 017 [arXiv:1311.4156] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  12. [12]
    T. Adamo, E. Casali and D. Skinner, Ambitwistor strings and the scattering equations at one loop, JHEP 04 (2014) 104 [arXiv:1312.3828] [INSPIRE].CrossRefADSGoogle Scholar
  13. [13]
    E. Casali and P. Tourkine, Infrared behaviour of the one-loop scattering equations and supergravity integrands, JHEP 04 (2015) 013 [arXiv:1412.3787] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  14. [14]
    T. Adamo and E. Casali, Scattering equations, supergravity integrands and pure spinors, JHEP 05 (2015) 120 [arXiv:1502.06826] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  15. [15]
    A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151 [arXiv:1308.0589] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  16. [16]
    A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152 [arXiv:1312.2229] [INSPIRE].CrossRefADSGoogle Scholar
  17. [17]
    T. Adamo, E. Casali and D. Skinner, Perturbative gravity at null infinity, Class. Quant. Grav. 31 (2014) 225008 [arXiv:1405.5122] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  18. [18]
    Y. Geyer, A.E. Lipstein and L. Mason, Ambitwistor strings at null infinity and (subleading) soft limits, Class. Quant. Grav. 32 (2015) 055003 [arXiv:1406.1462] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  19. [19]
    A.E. Lipstein, Soft theorems from conformal field theory, JHEP 06 (2015) 166 [arXiv:1504.01364] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  20. [20]
    T. Adamo and E. Casali, Perturbative gauge theory at null infinity, Phys. Rev. D 91 (2015) 125022 [arXiv:1504.02304] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Cachazo, S. He and E.Y. Yuan, Einstein-Yang-Mills scattering amplitudes from scattering equations, JHEP 01 (2015) 121 [arXiv:1409.8256] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  22. [22]
    F. Cachazo, S. He and E.Y. Yuan, Scattering equations and matrices: from Einstein to Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149 [arXiv:1412.3479] [INSPIRE].CrossRefADSGoogle Scholar
  23. [23]
    K. Ohmori, Worldsheet geometries of ambitwistor string, JHEP 06 (2015) 075 [arXiv:1504.02675] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  24. [24]
    E. Casali and D. Skinner, unpublished.Google Scholar
  25. [25]
    H. Kawai, D.C. Lewellen and S.H. Henry Tye, A relation between tree amplitudes of closed and open strings, Nucl. Phys. B 269 (1986) 1 [INSPIRE].CrossRefADSGoogle Scholar
  26. [26]
    Z. Bern, J.J.M. Carrasco and H. Johansson, New relations for gauge-theory amplitudes, Phys. Rev. D 78 (2008) 085011 [arXiv:0805.3993] [INSPIRE].MathSciNetADSGoogle Scholar
  27. [27]
    Z. Bern, A. De Freitas and H.L. Wong, On the coupling of gravitons to matter, Phys. Rev. Lett. 84 (2000) 3531 [hep-th/9912033] [INSPIRE].CrossRefADSGoogle Scholar
  28. [28]
    M. Chiodaroli, M. Günaydin, H. Johansson and R. Roiban, Scattering amplitudes in N = 2 Maxwell-Einstein and Yang-Mills/Einstein supergravity, JHEP 01 (2015) 081 [arXiv:1408.0764] [INSPIRE].CrossRefADSGoogle Scholar
  29. [29]
    Z. Bern, J.J.M. Carrasco and H. Johansson, Perturbative quantum gravity as a double copy of gauge theory, Phys. Rev. Lett. 105 (2010) 061602 [arXiv:1004.0476] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  30. [30]
    R. Monteiro and D. O’Connell, The kinematic algebras from the scattering equations, JHEP 03 (2014) 110 [arXiv:1311.1151] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  31. [31]
    S.G. Naculich, Scattering equations and virtuous kinematic numerators and dual-trace functions, JHEP 07 (2014) 143 [arXiv:1404.7141] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  32. [32]
    R. Kleiss and H. Kuijf, Multi-gluon cross-sections and five jet production at hadron colliders, Nucl. Phys. B 312 (1989) 616 [INSPIRE].CrossRefADSGoogle Scholar
  33. [33]
    V. Del Duca, L.J. Dixon and F. Maltoni, New color decompositions for gauge amplitudes at tree and loop level, Nucl. Phys. B 571 (2000) 51 [hep-ph/9910563] [INSPIRE].
  34. [34]
    V. Del Duca, A. Frizzo and F. Maltoni, Factorization of tree QCD amplitudes in the high-energy limit and in the collinear limit, Nucl. Phys. B 568 (2000) 211 [hep-ph/9909464] [INSPIRE].
  35. [35]
    C. Cheung, K. Kampf, J. Novotny and J. Trnka, Effective field theories from soft limits of scattering amplitudes, Phys. Rev. Lett. 114 (2015) 221602 [arXiv:1412.4095] [INSPIRE].CrossRefADSGoogle Scholar
  36. [36]
    K. Hinterbichler and A. Joyce, Hidden symmetry of the Galileon, Phys. Rev. D 92 (2015) 023503 [arXiv:1501.07600] [INSPIRE].ADSGoogle Scholar
  37. [37]
    T. Adamo, E. Casali and D. Skinner, A worldsheet theory for supergravity, JHEP 02 (2015) 116 [arXiv:1409.5656] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  38. [38]
    O. Chandía and B.C. Vallilo, Ambitwistor pure spinor string in a type-II supergravity background, JHEP 06 (2015) 206 [arXiv:1505.05122] [INSPIRE].CrossRefADSGoogle Scholar
  39. [39]
    L. Dolan and P. Goddard, Proof of the formula of Cachazo, He and Yuan for Yang-Mills tree amplitudes in arbitrary dimension, JHEP 05 (2014) 010 [arXiv:1311.5200] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  40. [40]
    S.G. Naculich, Scattering equations and BCJ relations for gauge and gravitational amplitudes with massive scalar particles, JHEP 09 (2014) 029 [arXiv:1407.7836] [INSPIRE].CrossRefADSGoogle Scholar
  41. [41]
    S.G. Naculich, CHY representations for gauge theory and gravity amplitudes with up to three massive particles, JHEP 05 (2015) 050 [arXiv:1501.03500] [INSPIRE].MathSciNetCrossRefADSGoogle Scholar
  42. [42]
    S.G. Naculich, Amplitudes for massive vector and scalar bosons in spontaneously-broken gauge theory from the CHY representation, JHEP 09 (2015) 122 [arXiv:1506.06134] [INSPIRE].CrossRefADSGoogle Scholar
  43. [43]
    Y.-T. Huang and S. Lee, A new integral formula for supersymmetric scattering amplitudes in three dimensions, Phys. Rev. Lett. 109 (2012) 191601 [arXiv:1207.4851] [INSPIRE].CrossRefADSGoogle Scholar
  44. [44]
    F. Cachazo, S. He and E.Y. Yuan, Scattering in three dimensions from rational maps, JHEP 10 (2013) 141 [arXiv:1306.2962] [INSPIRE].CrossRefADSGoogle Scholar
  45. [45]
    O.T. Engelund and R. Roiban, A twistor string for the ABJ(M) theory, JHEP 06 (2014) 088 [arXiv:1401.6242] [INSPIRE].CrossRefADSGoogle Scholar

Copyright information

© The Author(s) 2015

Authors and Affiliations

  • Eduardo Casali
    • 2
  • Yvonne Geyer
    • 1
  • Lionel Mason
    • 1
  • Ricardo Monteiro
    • 1
  • Kai A. Roehrig
    • 2
  1. 1.Mathematical InstituteUniversity of OxfordOxfordU.K.
  2. 2.DAMTP, University of CambridgeCambridgeU.K.

Personalised recommendations