Skip to main content

\( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives

A preprint version of the article is available at arXiv.

Abstract

In view of the recent start of the NA62 experiment at CERN that is expected to measure the \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) branching ratio with a precision of 10%, we summarise the present status of this promising decay within the Standard Model (SM). We do likewise for the closely related \( {K}_L\to {\pi}^0\nu \overline{\nu} \), which will be measured by the KOTO experiment around 2020. As the perturbative QCD and electroweak corrections in both decays are under full control, the dominant uncertainties within the SM presently originate from the CKM parameters |V cb |, |V ub | and γ. We show this dependence with the help of analytic expressions as well as accurate interpolating formulae. Unfortunately a clarification of the discrepancies between inclusive and exclusive determinations of |V cb | and |V ub | from tree-level decays will likely require results from the Belle II experiment available at the end of this decade. Thus we investigate whether higher precision on both branching ratios is achievable by determining |V cb |, |V ub | and γ by means of other observables that are already precisely measured. In this context ε K and ΔM s,d , together with the expected progress in QCD lattice calculations will play a prominent role. We find \( \mathrm{\mathcal{B}}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right)=\left(9.11 \pm 0.72\right) \times 1{0}^{-11} \) and \( \mathrm{\mathcal{B}}\left({K}_L\to {\pi}^0\nu \overline{\nu}\right)\Big) = \left(3.00 \pm 0.30\right) \times 1{0}^{-11} \), which is more precise than using averages of the present tree-level values of |V cb |, |V ub | and γ. Furthermore, we point out the correlation between \( \mathrm{\mathcal{B}}\left({K}^{+}\to {\pi}^{+}\nu \overline{\nu}\right),\ \overline{\mathrm{\mathcal{B}}}\left({B}_{\mathrm{s}}\to {\mu}^{+}{\mu}^{-}\right) \) and γ within the SM, that is only very weakly dependent on other CKM parameters. Finally, we update the correlation of \( {K}_L\to {\pi}^0\nu \overline{\nu} \) with the ratio ε /ε in the SM taking the recent progress on ε /ε from lattice QCD and the large N approach into account.

References

  1. [1]

    G. Buchalla and A.J. Buras, QCD corrections to rare K and B decays for arbitrary top quark mass, Nucl. Phys. B 400 (1993) 225 [INSPIRE].

    Article  ADS  Google Scholar 

  2. [2]

    M. Misiak and J. Urban, QCD corrections to FCNC decays mediated by Z penguins and W boxes, Phys. Lett. B 451 (1999) 161 [hep-ph/9901278] [INSPIRE].

    Article  ADS  Google Scholar 

  3. [3]

    G. Buchalla and A.J. Buras, The rare decays \( K\to \pi \nu \overline{\nu},\ B\ \to\ X\nu \overline{\nu} \) and B → ℓ+ℓ−: An Update, Nucl. Phys. B 548 (1999) 309 [hep-ph/9901288] [INSPIRE].

    Article  ADS  Google Scholar 

  4. [4]

    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, The Rare decay \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) at the next-to-next-to-leading order in QCD, Phys. Rev. Lett. 95 (2005) 261805 [hep-ph/0508165] [INSPIRE].

    Article  ADS  Google Scholar 

  5. [5]

    A.J. Buras, M. Gorbahn, U. Haisch and U. Nierste, Charm quark contribution to \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) at next-to-next-to-leading order,JHEP 11 (2006) 002 [Erratum ibid. 1211 (2012) 167] [hep-ph/0603079] [INSPIRE].

  6. [6]

    M. Gorbahn and U. Haisch, Effective Hamiltonian for non-leptonicF| = 1 decays at NNLO in QCD, Nucl. Phys. B 713 (2005) 291 [hep-ph/0411071] [INSPIRE].

    Article  ADS  Google Scholar 

  7. [7]

    J. Brod and M. Gorbahn, Electroweak Corrections to the Charm Quark Contribution to \( {\mathrm{K}}^{+}\to {\pi}^{+}\nu \overline{\nu} \), Phys. Rev. D 78 (2008) 034006 [arXiv:0805.4119] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    J. Brod, M. Gorbahn and E. Stamou, Two-Loop Electroweak Corrections for the \( K\to \pi \nu \overline{\nu} \) Decays, Phys. Rev. D 83 (2011) 034030 [arXiv:1009.0947] [INSPIRE].

    ADS  Google Scholar 

  9. [9]

    G. Buchalla and A.J. Buras, Two loop large m t electroweak corrections to \( K\to \pi \nu \overline{\nu} \) for arbitrary Higgs boson mass, Phys. Rev. D 57 (1998) 216 [hep-ph/9707243] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    G. Isidori, F. Mescia and C. Smith, Light-quark loops in \( K\to \pi \nu \overline{\nu} \), Nucl. Phys. B 718 (2005) 319 [hep-ph/0503107] [INSPIRE].

    Article  ADS  Google Scholar 

  11. [11]

    F. Mescia and C. Smith, Improved estimates of rare K decay matrix-elements from K ℓ3 decays, Phys. Rev. D 76 (2007) 034017 [arXiv:0705.2025] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    A.J. Buras, F. Schwab and S. Uhlig, Waiting for precise measurements of \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \), Rev. Mod. Phys. 80 (2008) 965 [hep-ph/0405132] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    G. Isidori, Flavor Physics with light quarks and leptons, eConf C 060409 (2006) 035 [hep-ph/0606047] [INSPIRE].

    Google Scholar 

  14. [14]

    C. Smith, Theory review on rare K decays: Standard model and beyond, hep-ph/0608343 [INSPIRE].

  15. [15]

    T.K. Komatsubara, Experiments with K-Meson Decays, Prog. Part. Nucl. Phys. 67 (2012) 995 [arXiv:1203.6437] [INSPIRE].

    Article  ADS  Google Scholar 

  16. [16]

    A.J. Buras and J. Girrbach, Towards the Identification of New Physics through Quark Flavour Violating Processes, Rept. Prog. Phys. 77 (2014) 086201 [arXiv:1306.3775] [INSPIRE].

    Article  ADS  Google Scholar 

  17. [17]

    M. Blanke, New Physics Signatures in Kaon Decays, PoS KAON13 (2013) 010 [arXiv:1305.5671] [INSPIRE].

  18. [18]

    C. Smith, Rare K decays: Challenges and Perspectives, arXiv:1409.6162 [INSPIRE].

  19. [19]

    A.J. Buras, D. Buttazzo, J. Girrbach-Noe and R. Knegjens, Can we reach the Zeptouniverse with rare K and B s,d decays?, JHEP 11 (2014) 121 [arXiv:1408.0728] [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    F. Newson et al., Prospects for \( {K}^{+}\to\ {\pi}^{+}\nu \overline{\nu} \) at CERN in NA62, arXiv:1411.0109 [INSPIRE].

  21. [21]

    A. Romano, The \( {K}^{+}\to\ {\pi}^{+}\nu \overline{\nu} \) decay in the NA62 experiment at CERN, arXiv:1411.6546 [INSPIRE].

  22. [22]

    KOTO collaboration, K. Shiomi, \( {K}_L^0\to\ {\pi}^0\nu \overline{\nu} \) at KOTO, arXiv:1411.4250 [INSPIRE].

  23. [23]

    A.J. Buras, F. De Fazio and J. Girrbach, ΔI = 1/2 rule, ε′/ε and \( K\ \to\ \pi \nu \overline{\nu} \) in Z′(Z) and G models with FCNC quark couplings, Eur. Phys. J. C 74 (2014) 2950 [arXiv:1404.3824] [INSPIRE].

    Article  ADS  Google Scholar 

  24. [24]

    C. Bobeth, U. Haisch, A. Lenz, B. Pecjak and G. Tetlalmatzi-Xolocotzi, On new physics in ΔΓ d , JHEP 06 (2014) 040 [arXiv:1404.2531] [INSPIRE].

    Article  ADS  Google Scholar 

  25. [25]

    C. Bobeth, M. Gorbahn and S. Vickers, Weak annihilation and new physics in charmless BMM decays,Eur. Phys. J. C 75 (2015) 340 [arXiv:1409.3252] [INSPIRE].

    Article  ADS  Google Scholar 

  26. [26]

    J. Brod, A. Lenz, G. Tetlalmatzi-Xolocotzi and M. Wiebusch, New physics effects in tree-level decays and the precision in the determination of the quark mixing angle γ, Phys. Rev. D 92 (2015) 033002 [arXiv:1412.1446] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    UTfit collaboration, M. Bona et al., The Unitarity Triangle Fit in the Standard Model and Hadronic Parameters from Lattice QCD: A Reappraisal after the Measurements of Δm(s) and BR(Bτ ν τ ), JHEP 10 (2006) 081 [hep-ph/0606167] [INSPIRE].

  28. [28]

    J. Charles et al., Current status of the Standard Model CKM fit and constraints on ΔF = 2 New Physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].

    ADS  Google Scholar 

  29. [29]

    S.H. Kettell, L.G. Landsberg and H.H. Nguyen, Alternative technique for standard model estimation of the rare kaon decay branchings BR( \( K\to \pi v\overline{\nu} \) ) (SM), Phys. Atom. Nucl. 67 (2004) 1398 [hep-ph/0212321] [INSPIRE].

    Article  ADS  Google Scholar 

  30. [30]

    A.J. Buras and J. Girrbach, Stringent tests of constrained Minimal Flavor Violation through ΔF =2 transitions, Eur. Phys. J. C 73 (2013) 2560 [arXiv:1304.6835] [INSPIRE].

    Article  ADS  Google Scholar 

  31. [31]

    Fermilab Lattice, MILC collaboration, C.M. Bouchard et al., Neutral B-Meson Mixing Parameters in and beyond the SM with 2+1 Flavor Lattice QCD, PoS LATTICE2014 (2014) 378 [arXiv:1412.5097] [INSPIRE].

  32. [32]

    Fermilab Lattice, MILC collaborations, D. Du et al., Bπℓν semileptonic form factors from unquenched lattice QCD and determination of |V ub |, PoS LATTICE2014 (2014) 385 [arXiv:1411.6038] [INSPIRE].

  33. [33]

    A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, hep-ph/9806471 [INSPIRE].

  34. [34]

    D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio et al., Investigating the near-criticality of the Higgs boson, JHEP 12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  35. [35]

    G. Isidori, G. Martinelli and P. Turchetti, Rare kaon decays on the lattice, Phys. Lett. B 633 (2006) 75 [hep-lat/0506026] [INSPIRE].

    Article  ADS  Google Scholar 

  36. [36]

    G. Buchalla and A.J. Buras, The rare decays \( {K}^{+}\to\ {\pi}^{+}\nu \overline{\nu} \) and K L → μ + μ beyond leading logarithms, Nucl. Phys. B 412 (1994) 106 [hep-ph/9308272] [INSPIRE].

    Article  ADS  Google Scholar 

  37. [37]

    K.G. Chetyrkin, J.H. Kuhn, A. Maier, P. Maierhofer, P. Marquard et al., Charm and Bottom Quark Masses: An Update, Phys. Rev. D 80 (2009) 074010 [arXiv:0907.2110] [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

  39. [39]

    G. Buchalla and A.J. Buras, \( K\to \pi \nu \overline{\nu} \) and high precision determinations of the CKM matrix, Phys. Rev. D 54 (1996) 6782 [hep-ph/9607447] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    G. Buchalla, A.J. Buras and M.E. Lautenbacher, Weak decays beyond leading logarithms, Rev. Mod. Phys. 68 (1996) 1125 [hep-ph/9512380] [INSPIRE].

    Article  ADS  Google Scholar 

  41. [41]

    E949 collaboration, A.V. Artamonov et al., New measurement of the \( {K}^{+}\to\ {\pi}^{+}\nu \overline{\nu} \) branching ratio, Phys. Rev. Lett. 101 (2008) 191802 [arXiv:0808.2459] [INSPIRE].

  42. [42]

    E391a collaboration, J.K. Ahn et al., Experimental study of the decay \( {K}_L^0\to\ {\pi}^0\nu \overline{\nu} \), Phys. Rev. D 81 (2010) 072004 [arXiv:0911.4789] [INSPIRE].

  43. [43]

    ORKA collaboration, E.T. Worcester, ORKA, The Golden Kaon Experiment: Precision measurement of \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and other rare processes, PoS KAON13 (2013) 035 [arXiv:1305.7245] [INSPIRE].

  44. [44]

    S. Aoki et al., Review of lattice results concerning low-energy particle physics, Eur. Phys. J. C 74 (2014) 2890 [arXiv:1310.8555] [INSPIRE].

    Article  ADS  Google Scholar 

  45. [45]

    Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-Hadron, C-Hadron and tau-lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  46. [46]

    A.J. Buras, J.-M. Gérard and W.A. Bardeen, Large-N Approach to Kaon Decays and Mixing 28 Years Later: ΔI = 1/2 Rule, \( {\widehat{B}}_K \) and ΔM K , Eur. Phys. J. C 74 (2014) 2871 [arXiv:1401.1385] [INSPIRE].

    Article  ADS  Google Scholar 

  47. [47]

    K. Trabelsi, on behalf of the CKMfitter Group collaboration, World average and experimental overview of γ/φ 3, presented at CKM 2014, http://ckmfitter.in2p3.fr.

  48. [48]

    J. Brod and M. Gorbahn, Next-to-Next-to-Leading-Order Charm-Quark Contribution to the CP-violation Parameter ε K and ΔM K , Phys. Rev. Lett. 108 (2012) 121801 [arXiv:1108.2036] [INSPIRE].

    Article  ADS  Google Scholar 

  49. [49]

    J. Brod and M. Gorbahn, ε K at Next-to-Next-to-Leading Order: The Charm-Top-Quark Contribution, Phys. Rev. D 82 (2010) 094026 [arXiv:1007.0684] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    A.J. Buras, M. Jamin and P.H. Weisz, Leading and Next-to-leading QCD Corrections to ε Parameter and \( {B}^0-{\overline{B}}^0 \) Mixing in the Presence of a Heavy Top Quark, Nucl. Phys. B 347 (1990) 491 [INSPIRE].

    Article  ADS  Google Scholar 

  51. [51]

    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B}^0-{\overline{B}}^0 \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].

    Article  ADS  Google Scholar 

  52. [52]

    ATLAS, CDF, CMS, D0 collaborations, First combination of Tevatron and LHC measurements of the top-quark mass, arXiv:1403.4427 [INSPIRE].

  53. [53]

    G. Ricciardi, Status of |V cb | and |V ub | CKM matrix elements, arXiv:1412.4288 [INSPIRE].

  54. [54]

    G. Ricciardi, Determination of the CKM matrix elements |V xb |, Mod. Phys. Lett. A 28 (2013) 1330016 [arXiv:1305.2844] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  55. [55]

    P. Gambino, Inclusive semileptonic B decays and |V cb |. In memoriam Kolya Uraltsev, Int. J. Mod. Phys. A 30 (2015) 1543002 [arXiv:1501.00314] [INSPIRE].

    Article  ADS  Google Scholar 

  56. [56]

    Fermilab Lattice, MILC collaborations, J.A. Bailey et al., Update of |V cb | from the \( \overline{B}\to\ {D}^{\ast}\ell \nu \) form factor at zero recoil with three-flavor lattice QCD, Phys. Rev. D 89 (2014) 114504 [arXiv:1403.0635] [INSPIRE].

  57. [57]

    A. Alberti, P. Gambino, K.J. Healey and S. Nandi, Precision Determination of the Cabibbo-Kobayashi-Maskawa Element V cb , Phys. Rev. Lett. 114 (2015) 061802 [arXiv:1411.6560] [INSPIRE].

    Article  ADS  Google Scholar 

  58. [58]

    S. Descotes-Genon, J. Matias and J. Virto, An analysis of B d,s mixing angles in presence of New Physics and an update of \( {B}_s\to {K}^{0\ast }{{\overline{K}}^0}^{\ast } \), Phys. Rev. D 85 (2012) 034010 [arXiv:1111.4882] [INSPIRE].

    ADS  Google Scholar 

  59. [59]

    K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk and N. Tuning, Branching Ratio Measurements of B s Decays, Phys. Rev. D 86 (2012) 014027 [arXiv:1204.1735] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    K. De Bruyn, R. Fleischer, R. Knegjens, P. Koppenburg, M. Merk et al., Probing New Physics via the B 0 s  → μ + μ Effective Lifetime, Phys. Rev. Lett. 109 (2012) 041801 [arXiv:1204.1737] [INSPIRE].

    Article  ADS  Google Scholar 

  61. [61]

    G. D’Ambrosio, G.F. Giudice, G. Isidori and A. Strumia, Minimal flavor violation: An Effective field theory approach, Nucl. Phys. B 645 (2002) 155 [hep-ph/0207036] [INSPIRE].

    Article  ADS  Google Scholar 

  62. [62]

    A.J. Buras, P. Gambino, M. Gorbahn, S. Jager and L. Silvestrini, Universal unitarity triangle and physics beyond the standard model, Phys. Lett. B 500 (2001) 161 [hep-ph/0007085] [INSPIRE].

    Article  ADS  Google Scholar 

  63. [63]

    G. Buchalla and A.J. Buras, sin 2β from \( K\to \pi \nu \overline{\nu} \), Phys. Lett. B 333 (1994) 221 [hep-ph/9405259] [INSPIRE].

    Article  ADS  Google Scholar 

  64. [64]

    A.J. Buras and R. Fleischer, Bounds on the unitarity triangle, sin 2β and \( K\to \pi \nu \overline{\nu} \) decays in models with minimal flavor violation, Phys. Rev. D 64 (2001) 115010 [hep-ph/0104238] [INSPIRE].

    ADS  Google Scholar 

  65. [65]

    S. Faller, M. Jung, R. Fleischer and T. Mannel, The Golden Modes B 0 → J/ψK S,L in the Era of Precision Flavour Physics, Phys. Rev. D 79 (2009) 014030 [arXiv:0809.0842] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    A.J. Buras, Relations between ΔM s,d and B s,d μ + μ in models with minimal flavor violation, Phys. Lett. B 566 (2003) 115 [hep-ph/0303060] [INSPIRE].

    Article  ADS  Google Scholar 

  67. [67]

    R. Barbieri, D. Buttazzo, F. Sala and D.M. Straub, Flavour physics from an approximate U(2)3 symmetry, JHEP 07 (2012) 181 [arXiv:1203.4218] [INSPIRE].

    Article  ADS  Google Scholar 

  68. [68]

    A.J. Buras and D. Guadagnoli, Correlations among new CP-violating effects in ΔF = 2 observables, Phys. Rev. D 78 (2008) 033005 [arXiv:0805.3887] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    A.J. Buras, D. Guadagnoli and G. Isidori, On ε K Beyond Lowest Order in the Operator Product Expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].

    Article  ADS  Google Scholar 

  70. [70]

    A. Caldwell, D. Kollar and K. Kroninger, BAT: The Bayesian Analysis Toolkit, Comput. Phys. Commun. 180 (2009) 2197 [arXiv:0808.2552] [INSPIRE].

    MATH  Article  ADS  Google Scholar 

  71. [71]

    C. Bobeth, M. Gorbahn, T. Hermann, M. Misiak, E. Stamou and M. Steinhauser, B s,d → ℓ + in the Standard Model with Reduced Theoretical Uncertainty, Phys. Rev. Lett. 112 (2014) 101801 [arXiv:1311.0903] [INSPIRE].

    Article  ADS  Google Scholar 

  72. [72]

    LHCb, CMS collaborations, V. Khachatryan et al., Observation of the rare B 0 s  → μ + μ decay from the combined analysis of CMS and LHCb data, Nature 522 (2015) 68 [arXiv:1411.4413] [INSPIRE].

  73. [73]

    G. D’Ambrosio and G. Isidori, \( {K}^{+}\to\ {\pi}^{+}\nu \overline{\nu} \) : A Rising star on the stage of flavor physics, Phys. Lett. B 530 (2002) 108 [hep-ph/0112135] [INSPIRE].

    Article  ADS  Google Scholar 

  74. [74]

    NA48 collaboration, J.R. Batley et al., A Precision measurement of direct CP-violation in the decay of neutral kaons into two pions, Phys. Lett. B 544 (2002) 97 [hep-ex/0208009] [INSPIRE].

  75. [75]

    KTeV collaboration, A. Alavi-Harati et al., Measurements of direct CP-violation, CPT symmetry and other parameters in the neutral kaon system, Phys. Rev. D 67 (2003) 012005 [Erratum ibid. D 70 (2004) 079904] [hep-ex/0208007] [INSPIRE].

  76. [76]

    KTeV collaboration, E.T. Worcester, The Final Measurement of ε′/ε from KTeV, arXiv:0909.2555 [INSPIRE].

  77. [77]

    A.J. Buras and J.M. Gérard, 1/N Expansion for Kaons, Nucl. Phys. B 264 (1986) 371 [INSPIRE].

    Article  ADS  Google Scholar 

  78. [78]

    W.A. Bardeen, A.J. Buras and J.M. Gérard, The ΔI = 1/2 Rule in the Large-N Limit, Phys. Lett. B 180 (1986) 133 [INSPIRE].

    Article  ADS  Google Scholar 

  79. [79]

    A.J. Buras and J.M. Gérard, Isospin Breaking Contributions to ε′/ε, Phys. Lett. B 192 (1987) 156 [INSPIRE].

    Article  ADS  Google Scholar 

  80. [80]

    T. Hambye, G.O. Kohler, E.A. Paschos, P.H. Soldan and W.A. Bardeen, 1/N corrections to the hadronic matrix elements of Q 6 and Q 8 in K → ππ decays, Phys. Rev. D 58 (1998) 014017 [hep-ph/9802300] [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    Z. Bai et al., Standard-model prediction for direct CP-violation in K → ππ decay, arXiv:1505.07863 [INSPIRE].

  82. [82]

    T. Blum et al., K → ππ ΔI = 3/2 decay amplitude in the continuum limit, Phys. Rev. D 91 (2015) 074502 [arXiv:1502.00263] [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    A.J. Buras, M. Gorbahn, S. äger and M. Jamin, Improved anatomy of ε′/ε in the Standard Model, arXiv:1507.06345 [INSPIRE].

  84. [84]

    A.J. Buras and J.-M. Gérard, Upper Bounds on ε′/ε Parameters B (61/2)6 and B (83/2)8 from Large-N QCD and other News, arXiv:1507.06326 [INSPIRE].

  85. [85]

    A.J. Buras and L. Silvestrini, Upper bounds on \( K\to \pi \nu \overline{\nu} \) and K L → π 0 e + e− from ε′/ε and KL → μ+μ−, Nucl. Phys. B 546 (1999) 299 [hep-ph/9811471] [INSPIRE].

    Article  ADS  Google Scholar 

  86. [86]

    A.J. Buras, G. Colangelo, G. Isidori, A. Romanino and L. Silvestrini, Connections between ε′/ε and rare kaon decays in supersymmetry, Nucl. Phys. B 566 (2000) 3 [hep-ph/9908371] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    M. Blanke, A.J. Buras, S. Recksiegel, C. Tarantino and S. Uhlig, Correlations between ε′/ε and rare K decays in the littlest Higgs model with T-parity, JHEP 06 (2007) 082 [arXiv:0704.3329] [INSPIRE].

    Article  ADS  Google Scholar 

  88. [88]

    M. Bauer, S. Casagrande, U. Haisch and M. Neubert, Flavor Physics in the Randall-Sundrum Model: II. Tree-Level Weak-Interaction Processes, JHEP 09 (2010) 017 [arXiv:0912.1625] [INSPIRE].

    Article  ADS  Google Scholar 

  89. [89]

    A.J. Buras, D. Buttazzo and R. Knegjens, \( K\ \to\ \pi \nu \overline{\nu} \) and ε′/ε in Simplified New Physics Models, arXiv:1507.08672 [INSPIRE].

  90. [90]

    M. Blanke, A.J. Buras and S. Recksiegel, Quark flavour observables in the Littlest Higgs model with T-parity after LHC Run 1, arXiv:1507.06316 [INSPIRE].

  91. [91]

    A.J. Buras, M. Jamin and M.E. Lautenbacher, The Anatomy of ε′/ε beyond leading logarithms with improved hadronic matrix elements, Nucl. Phys. B 408 (1993) 209 [hep-ph/9303284] [INSPIRE].

    Article  ADS  Google Scholar 

  92. [92]

    A.J. Buras, J. Girrbach-Noe, C. Niehoff and D.M. Straub, \( B\ \to\ {K}^{\left(\ast \right)}\nu \overline{\nu} \) decays in the Standard Model and beyond, JHEP 02 (2015) 184 [arXiv:1409.4557] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  93. [93]

    V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].

    Article  ADS  Google Scholar 

  94. [94]

    T. Blum et al., Lattice determination of the K → (ππ) I=2 Decay Amplitude A 2, Phys. Rev. D 86 (2012) 074513 [arXiv:1206.5142] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Dario Buttazzo.

Additional information

ArXiv ePrint: 1503.02693

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buras, A.J., Buttazzo, D., Girrbach-Noe, J. et al. \( {K}^{+}\to {\pi}^{+}\nu \overline{\nu} \) and \( {K}_L\to {\pi}^0\nu \overline{\nu} \) in the Standard Model: status and perspectives. J. High Energ. Phys. 2015, 33 (2015). https://doi.org/10.1007/JHEP11(2015)033

Download citation

Keywords

  • Rare Decays
  • Kaon Physics
  • Standard Model