Grand unification in the spectral Pati-Salam model

Abstract

We analyze the running at one-loop of the gauge couplings in the spectral Pati-Salam model that was derived in the framework of noncommutative geometry. There are a few different scenarios for the scalar particle content which are determined by the precise form of the Dirac operator for the finite noncommutative space. We consider these different scenarios and establish for all of them unification of the Pati-Salam gauge couplings. The boundary conditions are set by the usual RG flow for the Standard Model couplings at an intermediate mass scale at which the Pati-Salam symmetry is broken.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    T. Appelquist and J. Carazzone, Infrared singularities and massive fields, Phys. Rev. D 11 (1975) 2856 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    U. Aydemir, D. Minic, C. Sun and T. Takeuchi, Pati-Salam unification from non-commutative geometry and the TeV-scale W R boson, arXiv:1509.01606 [INSPIRE].

  3. [3]

    V.D. Barger, E. Ma and K. Whisnant, General analysis of a possible second weak neutral current in gauge models, Phys. Rev. D 26 (1982) 2378 [INSPIRE].

    ADS  Google Scholar 

  4. [4]

    A.H. Chamseddine and A. Connes, Universal formula for noncommutative geometry actions: unification of gravity and the Standard Model, Phys. Rev. Lett. 77 (1996) 4868 [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  5. [5]

    A.H. Chamseddine and A. Connes, The spectral action principle, Commun. Math. Phys. 186 (1997) 731 [hep-th/9606001] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  6. [6]

    A.H. Chamseddine and A. Connes, Why the Standard Model, J. Geom. Phys. 58 (2008) 38 [arXiv:0706.3688] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  7. [7]

    A.H. Chamseddine and A. Connes, Noncommutative geometry as a framework for unification of all fundamental interactions including gravity. Part I, Fortsch. Phys. 58 (2010) 553 [arXiv:1004.0464] [INSPIRE].

    MATH  MathSciNet  Article  ADS  Google Scholar 

  8. [8]

    A.H. Chamseddine and A. Connes, Resilience of the spectral Standard Model, JHEP 09 (2012) 104 [arXiv:1208.1030] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  9. [9]

    A.H. Chamseddine, A. Connes and M. Marcolli, Gravity and the Standard Model with neutrino mixing, Adv. Theor. Math. Phys. 11 (2007) 991 [hep-th/0610241] [INSPIRE].

    MATH  MathSciNet  Article  Google Scholar 

  10. [10]

    A.H. Chamseddine, A. Connes and V. Mukhanov, Geometry and the quantum: basics, JHEP 12 (2014) 098 [arXiv:1411.0977] [INSPIRE].

    MathSciNet  Article  ADS  Google Scholar 

  11. [11]

    A.H. Chamseddine, A. Connes and V. Mukhanov, Quanta of geometry: noncommutative aspects, Phys. Rev. Lett. 114 (2015) 091302 [arXiv:1409.2471] [INSPIRE].

    Article  ADS  Google Scholar 

  12. [12]

    A.H. Chamseddine, A. Connes and W.D. van Suijlekom, Beyond the spectral Standard Model: emergence of Pati-Salam unification, JHEP 11 (2013) 132 [arXiv:1304.8050] [INSPIRE].

    Article  ADS  Google Scholar 

  13. [13]

    D. Chang, R.N. Mohapatra and M.K. Parida, A new approach to left-right symmetry breaking in unified gauge theories, Phys. Rev. D 30 (1984) 1052 [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    T.P. Cheng, E. Eichten and L.-F. Li, Higgs phenomena in asymptotically free gauge theories, Phys. Rev. D 9 (1974) 2259 [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    V. Elias, Coupling constant renormalization in unified gauge theories containing the Pati-Salam model, Phys. Rev. D 14 (1976) 1896 [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    V. Elias, Gauge coupling constant magnitudes in the Pati-Salam model, Phys. Rev. D 16 (1977) 1586 [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 1. Wave function renormalization, Nucl. Phys. B 222 (1983) 83 [INSPIRE].

    Article  ADS  Google Scholar 

  18. [18]

    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 2. Yukawa couplings, Nucl. Phys. B 236 (1984) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  19. [19]

    M.E. Machacek and M.T. Vaughn, Two loop renormalization group equations in a general quantum field theory. 3. Scalar quartic couplings, Nucl. Phys. B 249 (1985) 70 [INSPIRE].

    Article  ADS  Google Scholar 

  20. [20]

    W. McKay and J. Patera, Tables of dimensions, indices, and branching rules for representations of simple Lie algebras, Lect. Notes Pure Appl. Math. 69, Marcel Dekker Inc., New York U.S.A. (1981).

  21. [21]

    R. Mohapatra, Unification and supersymmetry. The frontiers of quark-lepton physics, third edition, Springer, New York U.S.A. (2003).

  22. [22]

    J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Walter D. van Suijlekom.

Additional information

ArXiv ePrint: 1507.08161

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chamseddine, A.H., Connes, A. & van Suijlekom, W.D. Grand unification in the spectral Pati-Salam model. J. High Energ. Phys. 2015, 11 (2015). https://doi.org/10.1007/JHEP11(2015)011

Download citation

Keywords

  • Beyond Standard Model
  • Non-Commutative Geometry
  • Spontaneous Symmetry Breaking
  • Renormalization Group