Journal of High Energy Physics

, 2014:110 | Cite as

Space from string bits

  • Charles B. Thorn
Open Access
Regular Article - Theoretical Physics


We develop superstring bit models, in which the lightcone transverse coordinates in D spacetime dimensions are replaced with d = D −2 double-valued “flavor” indices x k f k = 1, 2; k = 2, . . . , d + 1. In such models the string bits have no space to move. Let-ting each string bit be an adjoint of a “color” group U(N), we then analyze the physics of ’t Hooft’s limit N → ∞, in which closed chains of many string bits behave like free lightcone IIB superstrings with d compact coordinate bosonic worldsheet fields x k , and s pairs of Grassmann fermionic fields θ L,R a , a = 1, . . . , s. The coordinates x k emerge because, on the long chains, flavor fluctuations enjoy the dynamics of d anisotropic Heisenberg spin chains. It is well-known that the low energy excitations of a many-spin Heisenberg chain are identical to those of a string worldsheet coordinate compactified on a circle of radius R k , which is related to the anisotropy parameter −1 ≤ Δ k ≤ 1 of the corresponding Heisenberg system. Furthermore there is a limit of this parameter, Δ k → ±1, in which R k → ∞. As noted in earlier work [Phys. Rev. D 89 (2014) 105002], these multi-string-bit chains are strictly stable at N = ∞ when d < s and only marginally stable when d = s. (Poincaré supersymmetry requires d = s = 8, which is on the boundary between stability and instability.)


M(atrix) Theories Bethe Ansatz 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    C.B. Thorn, Reformulating string theory with the 1/N expansion, in Sakharov memorial lectures in physics, vol. 1, L.V. Keldysh and V.Ya. Fainberg eds., Nova Science Publishers, Commack U.S.A. (1992), pg. 447 [hep-th/9405069] [INSPIRE].
  2. [2]
    O. Bergman and C.B. Thorn, String bit models for superstring, Phys. Rev. D 52 (1995) 5980 [hep-th/9506125] [INSPIRE].ADSMathSciNetGoogle Scholar
  3. [3]
    C.B. Thorn, Substructure of string, hep-th/9607204 [INSPIRE].
  4. [4]
    G. ’t Hooft, A planar diagram theory for strong interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].ADSMathSciNetGoogle Scholar
  5. [5]
    C.B. Thorn, ≥Fock space description of the 1/N c expansion of quantum chromodynamics, Phys. Rev. D 20 (1979) 1435 [INSPIRE].ADSGoogle Scholar
  6. [6]
    G. ’t Hooft, Quantization of discrete deterministic theories by Hilbert space extension, Nucl. Phys. B 342 (1990) 471 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  7. [7]
    G. ’t Hooft, On the quantization of space and time, in Proc. of the 4th Seminar on Quantum Gravity, Moscow USSR May 25-29 1987, M.A. Markov ed., World Scientific Press, Singapore (1988) [INSPIRE].
  8. [8]
    G. ’t Hooft, Dimensional reduction in quantum gravity, gr-qc/9310026 [INSPIRE].
  9. [9]
    S. Sun and C.B. Thorn, Stable string bit models, Phys. Rev. D 89 (2014) 105002 [arXiv:1402.7362] [INSPIRE].ADSGoogle Scholar
  10. [10]
    S. Sun, Detailed study of the simplest superstring bit model, to appear.Google Scholar
  11. [11]
    G. ’t Hooft, On the foundations of superstring theory, Found. Phys. 43 (2013) 46 [INSPIRE].
  12. [12]
    P. Goddard, C. Rebbi and C.B. Thorn, Lorentz covariance and the physical states in dual resonance models, Nuovo Cim. A 12 (1972) 425 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar
  13. [13]
    P. Goddard, J. Goldstone, C. Rebbi and C.B. Thorn, Quantum dynamics of a massless relativistic string, Nucl. Phys. B 56 (1973) 109 [INSPIRE].ADSCrossRefGoogle Scholar
  14. [14]
    S. Mandelstam, Interacting string picture of dual resonance models, Nucl. Phys. B 64 (1973) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    S. Mandelstam, Interacting string picture of the Neveu-Schwarz-Ramond model, Nucl. Phys. B 69 (1974) 77 [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    R. Giles and C.B. Thorn, A lattice approach to string theory, Phys. Rev. D 16 (1977) 366 [INSPIRE].ADSGoogle Scholar
  17. [17]
    H. Bethe, On the theory of metals. 1. Eigenvalues and eigenfunctions for the linear atomic chain (in German), Z. Phys. 71 (1931) 205 [INSPIRE].ADSCrossRefGoogle Scholar
  18. [18]
    C.-N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin spin interactions. 1. Proof of Bethes hypothesis for ground state in a finite system, Phys. Rev. 150 (1966) 321 [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    C.N. Yang and C.P. Yang, One-dimensional chain of anisotropic spin spin interactions. 2. Properties of the ground state energy per lattice site for an infinite system, Phys. Rev. 150 (1966) 327 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    F. Gliozzi, J. Scherk and D.I. Olive, Supersymmetry, supergravity theories and the dual spinor model, Nucl. Phys. B 122 (1977) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    P. Ramond, Dual theory for free fermions, Phys. Rev. D 3 (1971) 2415 [INSPIRE].ADSMathSciNetGoogle Scholar
  22. [22]
    A. Neveu and J.H. Schwarz, Factorizable dual model of pions, Nucl. Phys. B 31 (1971) 86 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    A. Neveu, J.H. Schwarz and C.B. Thorn, Reformulation of the dual pion model, Phys. Lett. B 35 (1971) 529 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    C.B. Thorn, Embryonic dual model for pions and fermions, Phys. Rev. D 4 (1971) 1112 [INSPIRE].ADSGoogle Scholar
  25. [25]
    A. Neveu and J.H. Schwarz, Quark model of dual pions, Phys. Rev. D 4 (1971) 1109 [INSPIRE].ADSGoogle Scholar
  26. [26]
    K. Bardakci and M.B. Halpern, New dual quark models, Phys. Rev. D 3 (1971) 2493 [INSPIRE].ADSMathSciNetGoogle Scholar
  27. [27]
    M.B. Green and J.H. Schwarz, Supersymmetrical dual string theory, Nucl. Phys. B 181 (1981) 502 [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    R. Giles, L.D. McLerran and C.B. Thorn, The string representation for a field theory with internal symmetry, Phys. Rev. D 17 (1978) 2058 [INSPIRE].ADSGoogle Scholar
  29. [29]
    L. Brink and H.B. Nielsen, A simple physical interpretation of the critical dimension of space-time in dual models, Phys. Lett. B 45 (1973) 332 [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    M.B. Green, J.H. Schwarz and L. Brink, Superfield theory of type II superstrings, Nucl. Phys. B 219 (1983) 437 [INSPIRE].ADSCrossRefMathSciNetGoogle Scholar

Copyright information

© The Author(s) 2014

Authors and Affiliations

  1. 1.Institute for Fundamental Theory, Department of PhysicsUniversity of FloridaGainesvilleU.S.A.

Personalised recommendations