Skip to main content
Log in

Double trace flows and holographic RG in dS/CFT correspondence

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

If there is a dS/CFT correspondence, time evolution in the bulk should translate to RG flows in the dual euclidean field theory. Consequently, although the dual field is expected to be non-unitary, its RG flows will carry an imprint of the unitary time evolution in the bulk. In this note we examine the prediction of holographic RG in de Sitter space for the flow of double and triple trace couplings in any proposed dual. We show quite generally that the correct form of the field theory beta functions for the double trace couplings is obtained from holography, provided one identifies the scale of the field theory with (i|T|) where T is the ‘time’ in conformal coordinates. For dS 4, we find that with an appropriate choice of operator normalization, it is possible to have real n-point correlation functions as well as beta functions with real coefficients. This choice leads to an RG flow with an IR fixed point at negative coupling unlike in a unitary theory where the IR fixed point is at positive coupling. The proposed correspondence of Sp(N) vector models with de Sitter Vasiliev gravity provides a specific example of such a phenomenon. For dS d+1 with even d, however, we find that no choice of operator normalization exists which ensures reality of coefficients of the beta-functions as well as absence of n-dependent phases for various n-point functions, as long as one assumes real coupling constants in the bulk Lagrangian.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. Witten, Quantum gravity in de Sitter space, hep-th/0106109 [INSPIRE].

  2. A. Strominger, The dS/CFT correspondence, JHEP 10 (2001) 034 [hep-th/0106113] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. J.M. Maldacena, Non-gaussian features of primordial fluctuations in single field inflationary models, JHEP 05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    Article  ADS  Google Scholar 

  4. D. Harlow and D. Stanford, Operator dictionaries and wave functions in AdS/CFT and dS/CFT, arXiv:1104.2621 [INSPIRE].

  5. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Adv. Theor. Math. Phys. 2 (1998) 231 [Int. J. Theor. Phys. 38 (1999) 1113] [hep-th/9711200] [INSPIRE].

  6. S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  7. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MathSciNet  ADS  MATH  Google Scholar 

  8. O. Aharony, S.S. Gubser, J.M. Maldacena, H. Ooguri and Y. Oz, Large-N field theories, string theory and gravity, Phys. Rept. 323 (2000) 183 [hep-th/9905111] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  9. D. Anninos, T. Hartman and A. Strominger, Higher spin realization of the dS/CFT correspondence, arXiv:1108.5735 [INSPIRE].

  10. S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10 (2012) 106 [arXiv:1101.4163] [INSPIRE].

    Article  ADS  Google Scholar 

  11. G.S. Ng and A. Strominger, State/operator correspondence in higher-spin dS/CFT, Class. Quant. Grav. 30 (2013) 104002 [arXiv:1204.1057] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  12. D. Anninos, De Sitter musings, Int. J. Mod. Phys. A 27 (2012) 1230013 [arXiv:1205.3855] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  13. D. Das, S.R. Das, A. Jevicki and Q. Ye, Bi-local construction of Sp(2N)/dS higher spin correspondence, JHEP 01 (2013) 107 [arXiv:1205.5776] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. D. Anninos, F. Denef and D. Harlow, The wave function of Vasilievs universeA few slices thereof, arXiv:1207.5517 [INSPIRE].

  15. E. Witten, Multitrace operators, boundary conditions and AdS/CFT correspondence, hep-th/0112258 [INSPIRE].

  16. I.R. Klebanov and E. Witten, AdS/CFT correspondence and symmetry breaking, Nucl. Phys. B 556 (1999) 89 [hep-th/9905104] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  17. W. Mueck, An Improved correspondence formula for AdS/CFT with multitrace operators, Phys. Lett. B 531 (2002) 301 [hep-th/0201100] [INSPIRE].

    Article  ADS  Google Scholar 

  18. S.S. Gubser and I.R. Klebanov, A universal result on central charges in the presence of double trace deformations, Nucl. Phys. B 656 (2003) 23 [hep-th/0212138] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  19. L. Vecchi, The conformal window of deformed CFTs in the planar limit, Phys. Rev. D 82 (2010) 045013 [arXiv:1004.2063] [INSPIRE].

    ADS  Google Scholar 

  20. L. Vecchi, Multitrace deformations, Gamow states, and Stability of AdS/CFT, JHEP 04 (2011) 056 [arXiv:1005.4921] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. I. Heemskerk and J. Polchinski, Holographic and wilsonian renormalization groups, JHEP 06 (2011) 031 [arXiv:1010.1264] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  22. T. Faulkner, H. Liu and M. Rangamani, Integrating out geometry: holographic wilsonian RG and the membrane paradigm, JHEP 08 (2011) 051 [arXiv:1010.4036] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  23. E.T. Akhmedov, A remark on the AdS/CFT correspondence and the renormalization group flow, Phys. Lett. B 442 (1998) 152 [hep-th/9806217] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  24. E. Alvarez and C. Gomez, Geometric holography, the renormalization group and the c theorem, Nucl. Phys. B 541 (1999) 441 [hep-th/9807226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  25. V. Balasubramanian and P. Kraus, Space-time and the holographic renormalization group, Phys. Rev. Lett. 83 (1999) 3605 [hep-th/9903190] [INSPIRE].

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. D.Z. Freedman, S.S. Gubser, K. Pilch and N. Warner, Renormalization group flows from holography supersymmetry and a c-theorem, Adv. Theor. Math. Phys. 3 (1999) 363 [hep-th/9904017] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  27. J. de Boer, E.P. Verlinde and H.L. Verlinde, On the holographic renormalization group, JHEP 08 (2000) 003 [hep-th/9912012] [INSPIRE].

    Article  Google Scholar 

  28. M. Bianchi, D.Z. Freedman and K. Skenderis, Holographic renormalization, Nucl. Phys. B 631 (2002) 159 [hep-th/0112119] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  29. E.T. Akhmedov, Notes on multitrace operators and holographic renormalization group, hep-th/0202055 [INSPIRE].

  30. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav. 19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    Article  MathSciNet  MATH  Google Scholar 

  31. D. Elander, H. Isono and G. Mandal, Holographic Wilsonian flows and emergent fermions in extremal charged black holes, JHEP 11 (2011) 155 [arXiv:1109.3366] [INSPIRE].

    Article  ADS  Google Scholar 

  32. V. Balasubramanian, M. Guica and A. Lawrence, Holographic interpretations of the renormalization group, JHEP 01 (2013) 115 [arXiv:1211.1729] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  33. X. Dong, B. Horn, E. Silverstein and G. Torroba, Moduli stabilization and the holographic RG for AdS and dS, JHEP 06 (2013) 089 [arXiv:1209.5392] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  34. A. LeClair and M. Neubert, Semi-Lorentz invariance, unitarity and critical exponents of symplectic fermion models, JHEP 10 (2007) 027 [arXiv:0705.4657] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  35. D. Anninos, F. Denef, G. Konstantinidis and E. Shaghoulian, Higher spin de Sitter holography from functional determinants, arXiv:1305.6321 [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gautam Mandal.

Additional information

ArXiv ePrint: 1306.0336

Rights and permissions

Reprints and permissions

About this article

Cite this article

Das, D., Das, S.R. & Mandal, G. Double trace flows and holographic RG in dS/CFT correspondence. J. High Energ. Phys. 2013, 186 (2013). https://doi.org/10.1007/JHEP11(2013)186

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)186

Keywords

Navigation