Skip to main content
Log in

Auxiliary gauge mediation: a new route to mini-split supersymmetry

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The discovery of a standard-model-like Higgs at 126 GeV and the absence of squark signals thus far at the LHC both point towards a mini-split spectrum for supersymmetry. Within standard paradigms, it is non-trivial to realize a mini-split spectrum with heavier sfermions but lighter gauginos while simultaneously generating Higgs sector soft terms of the correct magnitude, suggesting the need for new models of supersymmetry breaking and mediation. In this paper, we present a new approach to mini-split model building based on gauge mediation by “auxiliary groups”, which are the anomaly-free continuous symmetries of the standard model in the limit of vanishing Yukawa couplings. In addition to the well-known flavor SU(3) F and baryon-minus-lepton U(1) B−L groups, we find that an additional U(1) H acting on the Higgs doublets alone can be used to generate Higgs soft masses and B-terms necessary for a complete model of mini-split. Auxiliary gauge mediation is a special case of Higgsed gauge mediation, and we review the resulting two-loop scalar soft terms as well as three-loop gaugino masses. Along the way, we present a complete two-loop calculation of A-terms and B-terms in gauge mediation, which — contrary to a common misconception — includes a non-zero contribution at the messenger threshold which can be sizable in models with light gauginos. We present several phenomenologically acceptable mini-split spectra arising from auxiliary gauge mediation and highlight a complete minimal model which realizes the required spectrum and Higgs sector soft terms with a single U(1) X auxiliary gauge symmetry. We discuss possible experimental consequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. S.P. Martin, A Supersymmetry primer, hep-ph/9709356 [INSPIRE].

  4. S. Dimopoulos, S. Raby and F. Wilczek, Supersymmetry and the Scale of Unification, Phys.Rev. D 24 (1981) 1681 [INSPIRE].

    ADS  Google Scholar 

  5. S. Dimopoulos and H. Georgi, Softly Broken Supersymmetry and SU(5), Nucl. Phys. B 193 (1981) 150 [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Arvanitaki, N. Craig, S. Dimopoulos and G. Villadoro, Mini-Split, JHEP 02 (2013) 126 [arXiv:1210.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  7. N. Arkani-Hamed, A. Gupta, D.E. Kaplan, N. Weiner and T. Zorawski, Simply Unnatural Supersymmetry, arXiv:1212.6971 [INSPIRE].

  8. J.D. Wells, Implications of supersymmetry breaking with a little hierarchy between gauginos and scalars, hep-ph/0306127 [INSPIRE].

  9. G. Giudice and A. Romanino, Split supersymmetry, Nucl. Phys. B 699 (2004) 65 [Erratum ibid. B 706 (2005) 65-89] [hep-ph/0406088] [INSPIRE].

  10. N. Arkani-Hamed and S. Dimopoulos, Supersymmetric unification without low energy supersymmetry and signatures for fine-tuning at the LHC, JHEP 06 (2005) 073 [hep-th/0405159] [INSPIRE].

    Article  ADS  Google Scholar 

  11. L.J. Hall, Y. Nomura and S. Shirai, Spread Supersymmetry with Wino LSP: Gluino and Dark Matter Signals, JHEP 01 (2013) 036 [arXiv:1210.2395] [INSPIRE].

    Article  ADS  Google Scholar 

  12. E. Arganda, J.L. Diaz-Cruz and A. Szynkman, Slim SUSY, Phys. Lett. B 722 (2013) 100 [arXiv:1301.0708] [INSPIRE].

    Article  ADS  Google Scholar 

  13. M. Baryakhtar, E. Hardy and J. March-Russell, Axion Mediation, JHEP 07 (2013) 096 [arXiv:1301.0829] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  14. L.E. Ibáñez and I. Valenzuela, The Higgs Mass as a Signature of Heavy SUSY, JHEP 05 (2013) 064 [arXiv:1301.5167] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P. Grajek, A. Mariotti and D. Redigolo, Phenomenology of General Gauge Mediation in light of a 125 GeV Higgs, JHEP 07 (2013) 109 [arXiv:1303.0870] [INSPIRE].

    Article  ADS  Google Scholar 

  16. D. McKeen, M. Pospelov and A. Ritz, EDM Signatures of PeV-scale Superpartners, Phys. Rev. D 87 (2013) 113002 [arXiv:1303.1172] [INSPIRE].

    ADS  Google Scholar 

  17. L. Eliaz, A. Giveon, S.B. Gudnason and E. Tsuk, Mild-split SUSY with flavor, JHEP 10 (2013) 136 [arXiv:1306.2956] [INSPIRE].

    Article  ADS  Google Scholar 

  18. R. Sato, S. Shirai and K. Tobioka, Flavor of Gluino Decay in High-Scale Supersymmetry, JHEP 10 (2013) 157 [arXiv:1307.7144] [INSPIRE].

    Article  ADS  Google Scholar 

  19. A. Ibarra, Tachyonic squarks in split supersymmetry, Phys. Lett. B 620 (2005) 164 [hep-ph/0503160] [INSPIRE].

    Article  ADS  Google Scholar 

  20. N. Arkani-Hamed and H. Murayama, Can the supersymmetric flavor problem decouple?, Phys. Rev. D 56 (1997) 6733 [hep-ph/9703259] [INSPIRE].

    ADS  Google Scholar 

  21. K. Agashe and M. Graesser, Supersymmetry breaking and the supersymmetric flavor problem: an analysis of decoupling the first two generation scalars, Phys. Rev. D 59 (1999) 015007 [hep-ph/9801446] [INSPIRE].

    ADS  Google Scholar 

  22. P. Ko, Y. Omura and C. Yu, A Resolution of the Flavor Problem of Two Higgs Doublet Models with an Extra U(1) H Symmetry for Higgs Flavor, Phys. Lett. B 717 (2012) 202 [arXiv:1204.4588] [INSPIRE].

    Article  ADS  Google Scholar 

  23. E. Gorbatov and M. Sudano, Sparticle Masses in Higgsed Gauge Mediation, JHEP 10 (2008) 066 [arXiv:0802.0555] [INSPIRE].

    Article  ADS  Google Scholar 

  24. N. Craig, M. McCullough and J. Thaler, The New Flavor of Higgsed Gauge Mediation, JHEP 03 (2012) 049 [arXiv:1201.2179] [INSPIRE].

    Article  ADS  Google Scholar 

  25. N. Craig, M. McCullough and J. Thaler, Flavor Mediation Delivers Natural SUSY, JHEP 06 (2012) 046 [arXiv:1203.1622] [INSPIRE].

    Article  ADS  Google Scholar 

  26. R. Rattazzi and U. Sarid, Large tan β in gauge mediated SUSY breaking models, Nucl. Phys. B 501 (1997) 297 [hep-ph/9612464] [INSPIRE].

    Article  ADS  Google Scholar 

  27. G. Giudice and R. Rattazzi, Extracting supersymmetry breaking effects from wave function renormalization, Nucl. Phys. B 511 (1998) 25 [hep-ph/9706540] [INSPIRE].

    Article  ADS  Google Scholar 

  28. N. Arkani-Hamed, G.F. Giudice, M.A. Luty and R. Rattazzi, Supersymmetry breaking loops from analytic continuation into superspace, Phys. Rev. D 58 (1998) 115005 [hep-ph/9803290] [INSPIRE].

    ADS  Google Scholar 

  29. J.L. Feng, A. Rajaraman and F. Takayama, Superweakly interacting massive particles, Phys. Rev. Lett. 91 (2003) 011302 [hep-ph/0302215] [INSPIRE].

    Article  ADS  Google Scholar 

  30. J.L. Feng, A. Rajaraman and F. Takayama, SuperWIMP dark matter signals from the early universe, Phys. Rev. D 68 (2003) 063504 [hep-ph/0306024] [INSPIRE].

    ADS  Google Scholar 

  31. S. Groot Nibbelink and T.S. Nyawelo, Two Loop effective Kähler potential of (non-)renormalizable supersymmetric models, JHEP 01 (2006) 034 [hep-th/0511004] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  32. C. Ford and D. Jones, The effective potential and the differential equations method for Feynman integrals, Phys. Lett. B 274 (1992) 409 [Erratum ibid. B 285 (1992) 399] [INSPIRE].

  33. T. Clark, O. Piguet and K. Sibold, The absence of radiative corrections to the axial current anomaly in supersymmetric QED, Nucl. Phys. B 159 (1979) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  34. K. Konishi, Anomalous Supersymmetry Transformation of Some Composite Operators in SQCD, Phys. Lett. B 135 (1984) 439 [INSPIRE].

    Article  ADS  Google Scholar 

  35. S.P. Martin, Evaluation of two loop selfenergy basis integrals using differential equations, Phys. Rev. D 68 (2003) 075002 [hep-ph/0307101] [INSPIRE].

    ADS  Google Scholar 

  36. D.E. Kaplan, F. Lepeintre, A. Masiero, A.E. Nelson and A. Riotto, Fermion masses and gauge mediated supersymmetry breaking from a single U(1), Phys. Rev. D 60 (1999) 055003 [hep-ph/9806430] [INSPIRE].

    ADS  Google Scholar 

  37. H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, A chiral supersymmetric standard model, Phys. Lett. B 439 (1998) 301 [hep-ph/9807246] [INSPIRE].

    Article  ADS  Google Scholar 

  38. H.-C. Cheng, B.A. Dobrescu and K.T. Matchev, Generic and chiral extensions of the supersymmetric standard model, Nucl. Phys. B 543 (1999) 47 [hep-ph/9811316] [INSPIRE].

    Article  ADS  Google Scholar 

  39. L.L. Everett, P. Langacker, M. Plümacher and J. Wang, Alternative supersymmetric spectra, Phys. Lett. B 477 (2000) 233 [hep-ph/0001073] [INSPIRE].

    Article  ADS  Google Scholar 

  40. P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Z -mediated Supersymmetry Breaking, Phys. Rev. Lett. 100 (2008) 041802 [arXiv:0710.1632] [INSPIRE].

    Article  ADS  Google Scholar 

  41. P. Langacker, G. Paz, L.-T. Wang and I. Yavin, Aspects of Z-mediated Supersymmetry Breaking, Phys. Rev. D 77 (2008) 085033 [arXiv:0801.3693] [INSPIRE].

    ADS  Google Scholar 

  42. I. Affleck, M. Dine and N. Seiberg, Dynamical Supersymmetry Breaking in Four-Dimensions and Its Phenomenological Implications, Nucl. Phys. B 256 (1985) 557 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  43. B.A. Dobrescu, B-L mediated supersymmetry breaking, Phys. Lett. B 403 (1997) 285 [hep-ph/9703390] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  44. T. Kikuchi and T. Kubo, Radiative B-L symmetry breaking and the Z-prime mediated SUSY breaking, Phys. Lett. B 666 (2008) 262 [arXiv:0804.3933] [INSPIRE].

    Article  ADS  Google Scholar 

  45. R. Mohapatra and S. Nandi, A new messenger sector for gauge mediated supersymmetry breaking, Phys. Rev. Lett. 79 (1997) 181 [hep-ph/9702291] [INSPIRE].

    Article  ADS  Google Scholar 

  46. B. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput. Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  47. CMS collaboration, Search for supersymmetry in events with photons and missing energy, CMS-PAS-SUS-12-018.

  48. CMS collaboration, Search for new physics in events with photons, jets and missing transverse energy in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 03 (2013) 111 [arXiv:1211.4784] [INSPIRE].

    ADS  Google Scholar 

  49. ATLAS collaboration, Search for diphoton events with large missing transverse momentum in 7 TeV proton-proton collision data with the ATLAS detector, Phys. Lett. B 718 (2012) 411 [arXiv:1209.0753] [INSPIRE].

    ADS  Google Scholar 

  50. C. Cheung, Y. Nomura and J. Thaler, Goldstini, JHEP 03 (2010) 073 [arXiv:1002.1967] [INSPIRE]

    Article  MathSciNet  ADS  Google Scholar 

  51. M.A. Luty, Weak scale supersymmetry without weak scale supergravity, Phys. Rev. Lett. 89 (2002) 141801 [hep-th/0205077] [INSPIRE].

    Article  ADS  Google Scholar 

  52. N.J. Craig and D.R. Green, Sequestering the Gravitino: Neutralino Dark Matter in Gauge Mediation, Phys. Rev. D 79 (2009) 065030 [arXiv:0808.1097] [INSPIRE].

    ADS  Google Scholar 

  53. J.L. Feng, Z. Surujon and H.-B. Yu, Confluence of Constraints in Gauge Mediation: The 125 GeV Higgs Boson and Goldilocks Cosmology, Phys. Rev. D 86 (2012) 035003 [arXiv:1205.6480] [INSPIRE].

    ADS  Google Scholar 

  54. K.A. Intriligator, N. Seiberg and D. Shih, Dynamical SUSY breaking in meta-stable vacua, JHEP 04 (2006) 021 [hep-th/0602239] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yonatan Kahn.

Additional information

ArXiv ePrint: 1308.3490

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kahn, Y., McCullough, M. & Thaler, J. Auxiliary gauge mediation: a new route to mini-split supersymmetry. J. High Energ. Phys. 2013, 161 (2013). https://doi.org/10.1007/JHEP11(2013)161

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)161

Keywords

Navigation