Abstract
The G/G WZW model results from the WZW-model by a standard procedure of gauging. G/G WZW models are members of Dirac sigma models, which also contain twisted Poisson sigma models as other examples. We show how the general class of Dirac sigma models can be obtained from a gauging procedure adapted to Lie algebroids in the form of an equivariantly closed extension. The rigid gauge groups are generically infinite dimensional and a standard gauging procedure would give a likewise infinite number of 1-form gauge fields; the proposed construction yields the requested finite number of them.
Although physics terminology is used, the presentation is kept accessible also for a mathematical audience.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
E. Witten, Non-Abelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].
J.M. Figueroa-O’Farrill and S. Stanciu, Equivariant cohomology and gauged bosonic σ-models, hep-th/9407149 [INSPIRE].
J.M. Figueroa-O’Farrill and N. Mohammedi, Gauging the Wess-Zumino term of a σ-model with boundary, JHEP 08 (2005) 086 [hep-th/0506049] [INSPIRE].
A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005) 035 [hep-th/0410183] [INSPIRE].
K. Gawȩdzki and A. Kupiainen, G/H conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988) 119 [INSPIRE].
K. Gawȩdzki and A. Kupiainen, Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625 [INSPIRE].
K. Gawȩdzki, R.R. Suszek and K. Waldorf, Global gauge anomalies in two-dimensional bosonic σ-models, Commun. Math. Phys. 302 (2011) 513 [arXiv:1003.4154] [INSPIRE].
A. Gerasimov, Localization in GWZW and Verlinde formula, hep-th/9305090 [INSPIRE].
N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Annals Phys. 235 (1994) 435 [hep-th/9312059] [INSPIRE].
P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A 9 (1994) 3129 [hep-th/9405110] [INSPIRE].
M. Kontsevich, Deformation quantization of Poisson manifolds. 1, Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].
A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].
T. Klösch and T. Strobl, Classical and quantum gravity in (1 + 1)-dimensions. Part 1: a unifying approach, Class. Quant. Grav. 13 (1996) 965 [Erratum ibid. 14 (1997) 825] [gr-qc/9508020] [INSPIRE].
T. Klösch and T. Strobl, Classical and quantum gravity in (1 + 1)-dimensions. Part 2: the universal coverings, Class. Quant. Grav. 13 (1996) 2395 [gr-qc/9511081] [INSPIRE].
T. Klösch and T. Strobl, Classical and quantum gravity in (1 + 1)-dimensions. Part 3: solutions of arbitrary topology, Class. Quant. Grav. 14 (1997) 1689 [hep-th/9607226] [INSPIRE].
C. Klimčík and T. Strobl, WZW — Poisson manifolds, J. Geom. Phys. 43 (2002) 341 [math/0104189] [INSPIRE].
P. Ševera and A. Weinstein, Poisson geometry with a 3 form background, Prog. Theor. Phys. Suppl. 144 (2001) 145 [math.SG/0107133] [INSPIRE].
J.-S. Park, Topological open p-branes, in Symplectic geometry and mirror symmetry, Seoul 2000, World Sci. Publishing, River Edge NJ U.S.A. (2001) [hep-th/0012141] [INSPIRE].
A. Kotov, P. Schaller and T. Strobl, Dirac σ-models, Commun. Math. Phys. 260 (2005) 455 [hep-th/0411112] [INSPIRE].
A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative algebras, AMS Berkeley Mathematics Lecture Notes series, U.S.A. (1999).
K. Mackenzie, General theory of Lie groupoids and Lie algebroids, Cambridge U. Press, Cambridge U.K. (2005).
C. Mayer and T. Strobl, Lie algebroid Yang-Mills with matter fields, J. Geom. Phys. 59 (2009) 1613 [arXiv:0908.3161] [INSPIRE].
A. Kotov and T. Strobl, Generalizing geometry — algebroids and sigma models, in Handbook on pseudo-Riemannian geometry and supersymmetry, V. Cortes ed., European Mathematical Society, Switzerland (2010) [INSPIRE].
T. Strobl, Algebroid Yang-Mills theories, Phys. Rev. Lett. 93 (2004) 211601 [hep-th/0406215] [INSPIRE].
C.L. Rogers, L ∞ algebras from multisymplectic geometry, Lett. Math. Phys. 100 (2012) 29 [arXiv:1005.2230] [INSPIRE].
A. Kotov and T. Strobl, Characteristic classes associated to Q-bundles, arXiv:0711.4106 [INSPIRE].
J. Kalkman, BRST model for equivariant cohomology and representatives for the equivariant Thom class, Commun. Math. Phys. 153 (1993) 447 [INSPIRE].
J.A. De Azcárraga and J.M. Izquierdo, Lie groups, Lie algebras, cohomology and some applications in physics, Cambridge Monographs on Mathematical Physics, Cambridge U.K. (1995).
A. Vaintrob, Lie algebroids and homological vector fields, Usp. Mat. Nauk 52 (1997) 161 [Russ. Math. Surv. 52 (1997) 428].
Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004) 61 [math.DG/0312524] [INSPIRE].
M. Grützmann, V. Salnikov and T. Strobl, New methods for gauging, in preparation.
T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.
V. Salnikov, Gauged sigma models and graded geometry, Ph.D. thesis, Univ. Claude Bernard Lyon 1, Lyon France (2012).
M. Bojowald, A. Kotov and T. Strobl, Lie algebroid morphisms, Poisson σ-models and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005) 400 [math.DG/0406445] [INSPIRE].
M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Priceton U.S.A. (1991) [INSPIRE].
U. Bruzzo, L. Cirio, P. Rossi and V. Rubtsov, Equivariant cohomology and localization for Lie algebroids, Funct. Anal. Appl. 43 (2009) 18 [Funkt. Anal. Pril. 43 (2009) 22] [math.DG/0506392].
U. Bruzzo and V. Rubtsov, Cohomology of skew-holomorphic Lie algebroids, Theor. Math. Phys. 165 (2010) 1596 [INSPIRE].
U. Bruzzo and V. Rubtsov, On localization in holomorphic equivariant cohomology, Centr. Eur. J. Math. 10 (2012) 1442 [arXiv:0910.2019].
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
About this article
Cite this article
Salnikov, V., Strobl, T. Dirac sigma models from gauging. J. High Energ. Phys. 2013, 110 (2013). https://doi.org/10.1007/JHEP11(2013)110
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP11(2013)110