Skip to main content

Ensemble fermions for electroweak dynamics and the fermion preheating temperature

Abstract

We refine the implementation of ensemble fermions for the electroweak sector of the Standard Model, introduced in [1]. We consider the behavior of different observables as the size of the ensemble is increased and show that the dynamics converges for ensemble sizes small enough that simulations of the entire electroweak sector become numerically tractable. We apply the method to the computation of the effective preheating temperature during a fast electroweak transition, relevant for Cold Electroweak Baryogenesis. We find that this temperature is never below 20 GeV, and this in combination with the results of [2] convincingly rules out Standard Model CP-violation as the origin of the baryon asymmetry of the Universe.

This is a preview of subscription content, access via your institution.

References

  1. P.M. Saffin and A. Tranberg, Dynamical simulations of electroweak baryogenesis with fermions, JHEP 02 (2012) 102 [arXiv:1111.7136] [INSPIRE].

    ADS  Article  Google Scholar 

  2. T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Temperature dependence of Standard Model CP-violation, Phys. Rev. Lett. 108 (2012) 041601 [arXiv:1110.6818] [INSPIRE].

    ADS  Article  Google Scholar 

  3. M. D’Onofrio, K. Rummukainen and A. Tranberg, The sphaleron rate through the electroweak cross-over, JHEP 08 (2012) 123 [arXiv:1207.0685] [INSPIRE].

    ADS  Article  Google Scholar 

  4. K. Kajantie, M. Laine, K. Rummukainen and M.E. Shaposhnikov, Is there a hot electroweak phase transition at m H larger or equal to m W ?, Phys. Rev. Lett. 77 (1996) 2887 [hep-ph/9605288] [INSPIRE].

    ADS  Article  Google Scholar 

  5. E.J. Copeland, S. Pascoli and A. Rajantie, Dynamics of tachyonic preheating after hybrid inflation, Phys. Rev. D 65 (2002) 103517 [hep-ph/0202031] [INSPIRE].

    ADS  Google Scholar 

  6. A. Rajantie, P. Saffin and E.J. Copeland, Electroweak preheating on a lattice, Phys. Rev. D 63 (2001) 123512 [hep-ph/0012097] [INSPIRE].

    ADS  Google Scholar 

  7. J. García-Bellido, M. Garcia-Perez and A. Gonzalez-Arroyo, Chern-Simons production during preheating in hybrid inflation models, Phys. Rev. D 69 (2004) 023504 [hep-ph/0304285] [INSPIRE].

    ADS  Google Scholar 

  8. A. Diaz-Gil, J. García-Bellido, M. Garcia Perez and A. Gonzalez-Arroyo, Magnetic field production during preheating at the electroweak scale, Phys. Rev. Lett. 100 (2008) 241301 [arXiv:0712.4263] [INSPIRE].

    ADS  Article  Google Scholar 

  9. A. Tranberg and J. Smit, Baryon asymmetry from electroweak tachyonic preheating, JHEP 11 (2003) 016 [hep-ph/0310342] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  10. A. Tranberg and J. Smit, Simulations of cold electroweak baryogenesis: dependence on Higgs mass and strength of CP-violation, JHEP 08 (2006) 012 [hep-ph/0604263] [INSPIRE].

    ADS  Article  Google Scholar 

  11. A. Tranberg, A. Hernandez, T. Konstandin and M.G. Schmidt, Cold electroweak baryogenesis with Standard Model CP-violation, Phys. Lett. B 690 (2010) 207 [arXiv:0909.4199] [INSPIRE].

    ADS  Article  Google Scholar 

  12. A. Tranberg, J. Smit and M. Hindmarsh, Simulations of cold electroweak baryogenesis: finite time quenches, JHEP 01 (2007) 034 [hep-ph/0610096] [INSPIRE].

    ADS  Article  Google Scholar 

  13. G. Aarts and J. Smit, Particle production and effective thermalization in inhomogeneous mean field theory, Phys. Rev. D 61 (2000) 025002 [hep-ph/9906538] [INSPIRE].

    ADS  Google Scholar 

  14. G. Aarts and J. Smit, Real time dynamics with fermions on a lattice, Nucl. Phys. B 555 (1999) 355 [hep-ph/9812413] [INSPIRE].

    ADS  Article  Google Scholar 

  15. S. Borsányi and M. Hindmarsh, Low-cost fermions in classical field simulations, Phys. Rev. D 79 (2009) 065010 [arXiv:0809.4711] [INSPIRE].

    ADS  Google Scholar 

  16. F. Hebenstreit, J. Berges and D. Gelfand, Simulating fermion production in 1 + 1 dimensional QED, Phys. Rev. D 87 (2013) 105006 [arXiv:1302.5537] [INSPIRE].

    ADS  Google Scholar 

  17. F. Hebenstreit, J. Berges and D. Gelfand, Real-time dynamics of string breaking, arXiv:1307.4619 [INSPIRE].

  18. P.M. Saffin and A. Tranberg, Real-time Fermions for baryogenesis simulations, JHEP 07 (2011) 066 [arXiv:1105.5546] [INSPIRE].

    ADS  Article  Google Scholar 

  19. T. Brauner, O. Taanila, A. Tranberg and A. Vuorinen, Computing the temperature dependence of effective CP-violation in the Standard Model, JHEP 11 (2012) 076 [arXiv:1208.5609] [INSPIRE].

    ADS  Article  Google Scholar 

  20. J. García-Bellido, D.Y. Grigoriev, A. Kusenko and M.E. Shaposhnikov, Nonequilibrium electroweak baryogenesis from preheating after inflation, Phys. Rev. D 60 (1999) 123504 [hep-ph/9902449] [INSPIRE].

    ADS  Google Scholar 

  21. L.M. Krauss and M. Trodden, Baryogenesis below the electroweak scale, Phys. Rev. Lett. 83 (1999) 1502 [hep-ph/9902420] [INSPIRE].

    ADS  Article  Google Scholar 

  22. E.J. Copeland, D. Lyth, A. Rajantie and M. Trodden, Hybrid inflation and baryogenesis at the TeV scale, Phys. Rev. D 64 (2001) 043506 [hep-ph/0103231] [INSPIRE].

    ADS  Google Scholar 

  23. A. Hernandez, T. Konstandin and M.G. Schmidt, Sizable CP-violation in the bosonized Standard Model, Nucl. Phys. B 812 (2009) 290 [arXiv:0810.4092] [INSPIRE].

    ADS  Article  Google Scholar 

  24. C. Garcia-Recio and L.L. Salcedo, CP violation in the effective action of the Standard Model, JHEP 07 (2009) 015 [arXiv:0903.5494] [INSPIRE].

    ADS  Article  Google Scholar 

  25. L. Salcedo, Leading order one-loop CP and P violating effective action in the Standard Model, Phys. Lett. B 700 (2011) 331 [arXiv:1102.2400] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zong-Gang Mou.

Additional information

ArXiv ePrint: 1307.7924

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mou, ZG., Saffin, P.M. & Tranberg, A. Ensemble fermions for electroweak dynamics and the fermion preheating temperature. J. High Energ. Phys. 2013, 97 (2013). https://doi.org/10.1007/JHEP11(2013)097

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)097

Keywords

  • Lattice Gauge Field Theories
  • Nonperturbative Effects
  • Thermal Field Theory
  • Lattice Quantum Field Theory