Skip to main content
Log in

Minimally flavored colored scalar in \( \overline{B}\to {D^{{\left( * \right)}}}\tau \overline{\nu} \) and the mass matrices constraints

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The presence of a colored scalar that is a weak doublet with fractional electric charges of |Q| = 2/3 and |Q| = 5/3 with mass below 1 TeV can provide an explanation of the observed branching ratios in \( B\to {D^{{\left( * \right)}}}\tau \overline{\nu} \) decays. The required combination of scalar and tensor operators in the effective Hamiltonian for \( b\to c\tau \overline{\nu} \) is generated through the t-channel exchange. We focus on a scenario with a minimal set of Yukawa couplings that can address a semitauonic puzzle and show that its resolution puts a nontrivial bound on the product of the scalar couplings to \( \overline{\tau}b \) and \( \overline{c}\nu \). We also derive additional constraints posed by \( Z\to b\overline{b} \), muon magnetic moment, lepton flavor violating decays μ → eγ, τ → μγ, τ → eγ, and τ electric dipole moment. The minimal set of Yukawa couplings is not only compatible with the mass generation in an SU(5) unification framework, a natural environment for colored scalars, but specifies all matter mixing parameters except for one angle in the up-type quark sector. We accordingly spell out predictions for the proton decay signatures through gauge boson exchange and show that p → π0 e + is suppressed with respect to \( p\to {K^{+}}\overline{\nu} \) and even p → K 0 e + in some parts of available parameter space. Impact of the colored scalar embedding in 45-dimensional representation of SU(5) on low-energy phenomenology is also presented. Finally, we make predictions for rare top and charm decays where presence of this scalar can be tested independently.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. BaBar collaboration, J. Lees et al., Evidence for an excess of \( \overline{B}\to {D^{{\left( * \right)}}}{\tau^{-}}{{\overline{\nu}}_{\tau }} \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

    Article  ADS  Google Scholar 

  2. Belle collaboration, A. Matyja et al., Observation of B 0D ∗−τ +ντ decay at Belle, Phys. Rev. Lett. 99 (2007) 191807 [arXiv:0706.4429] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Fajfer, J.F. Kamenik, I. Nisandzic and J. Zupan, Implications of lepton flavor universality violations in B decays, Phys. Rev. Lett. 109 (2012) 161801 [arXiv:1206.1872] [INSPIRE].

    Article  ADS  Google Scholar 

  4. S. Fajfer and N. Kosnik, Leptoquarks in FCNC charm decays, Phys. Rev. D 79 (2009) 017502 [arXiv:0810.4858] [INSPIRE].

    ADS  Google Scholar 

  5. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Can scalar leptoquarks explain the f D s puzzle?, Phys. Lett. B 682 (2009) 67 [arXiv:0906.5585] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A.S. Kronfeld, Non-standard physics in leptonic and semileptonic decays of charmed mesons, PoS (LATTICE 2008) 282 [arXiv:0812.2030] [INSPIRE].

  7. E. Del Nobile, R. Franceschini, D. Pappadopulo and A. Strumia, Minimal matter at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 217 [arXiv:0908.1567] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S. Davidson and P. Verdier, Leptoquarks decaying to a top quark and a charged lepton at hadron colliders, Phys. Rev. D 83 (2011) 115016 [arXiv:1102.4562] [INSPIRE].

    ADS  Google Scholar 

  9. S.M. Barr and X. Calmet, Observable proton decay from Planck scale physics, Phys. Rev. D 86 (2012) 116010 [arXiv:1203.5694] [INSPIRE].

    ADS  Google Scholar 

  10. J.M. Arnold, B. Fornal and M.B. Wise, Phenomenology of scalar leptoquarks, Phys. Rev. D 88 (2013) 035009 [arXiv:1304.6119] [INSPIRE].

    ADS  Google Scholar 

  11. H. Georgi and C. Jarlskog, A new lepton-quark mass relation in a unified theory, Phys. Lett. B 86 (1979) 297 [INSPIRE].

    Article  ADS  Google Scholar 

  12. A. Giveon, L.J. Hall and U. Sarid, SU(5) unification revisited, Phys. Lett. B 271 (1991) 138 [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. Fileviez Perez, Renormalizable adjoint SU(5), Phys. Lett. B 654 (2007) 189 [hep-ph/0702287] [INSPIRE].

    Article  ADS  Google Scholar 

  14. I. Dorsner and I. Mocioiu, Predictions from type-II see-saw mechanism in SU(5), Nucl. Phys. B 796 (2008) 123 [arXiv:0708.3332] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  15. I. Dorsner, S. Fajfer, J.F. Kamenik and N. Kosnik, Light colored scalars from grand unification and the forward-backward asymmetry in tt production, Phys. Rev. D 81 (2010) 055009 [arXiv:0912.0972] [INSPIRE].

    ADS  Google Scholar 

  16. H. Georgi and S. Glashow, Unity of all elementary particle forces, Phys. Rev. Lett. 32 (1974) 438 [INSPIRE].

    Article  ADS  Google Scholar 

  17. I. Dorsner, S. Fajfer and N. Kosnik, Heavy and light scalar leptoquarks in proton decay, Phys. Rev. D 86 (2012) 015013 [arXiv:1204.0674] [INSPIRE].

    ADS  Google Scholar 

  18. P. Biancofiore, P. Colangelo and F. De Fazio, On the anomalous enhancement observed in \( B\to {D^{{\left( * \right)}}}\tau {{\overline{\nu}}_{\tau }} \) decays, Phys. Rev. D 87 (2013) 074010 [arXiv:1302.1042] [INSPIRE].

    ADS  Google Scholar 

  19. S. Fajfer, J.F. Kamenik and I. Nisandzic, On the \( B\to {D^{*}}\tau {{\overline{\nu}}_{\tau }} \) sensitivity to new physics, Phys. Rev. D 85 (2012) 094025 [arXiv:1203.2654] [INSPIRE].

    ADS  Google Scholar 

  20. A. Crivellin, C. Greub and A. Kokulu, Explaining B → Dτ ν, B → D (∗)τ ν and B → τ ν in a 2HDM of type-III, Phys. Rev. D 86 (2012) 054014 [arXiv:1206.2634] [INSPIRE].

    ADS  Google Scholar 

  21. A. Datta, M. Duraisamy and D. Ghosh, Diagnosing new physics in b → cτ ντ decays in the light of the recent BaBar result, Phys. Rev. D 86 (2012) 034027 [arXiv:1206.3760] [INSPIRE].

    ADS  Google Scholar 

  22. D. Becirevic, N. Kosnik and A. Tayduganov, \( \overline{B}\to D\tau {{\overline{\nu}}_{\tau }} \) vs. \( \overline{B}\to D\mu {{\overline{\nu}}_{\mu }} \), Phys. Lett. B 716 (2012) 208 [arXiv:1206.4977] [INSPIRE].

    Article  ADS  Google Scholar 

  23. D. Choudhury, D.K. Ghosh and A. Kundu, B decay anomalies in an effective theory, Phys. Rev. D 86 (2012) 114037 [arXiv:1210.5076] [INSPIRE].

    ADS  Google Scholar 

  24. A. Celis, M. Jung, X.-Q. Li and A. Pich, Sensitivity to charged scalars in B → D (∗)τντ and B → τντ decays,JHEP 01 (2013) 054 [arXiv:1210.8443] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M. Tanaka and R. Watanabe, New physics in the weak interaction of \( \overline{B}\to {D^{{\left( * \right)}}}\tau \overline{\nu} \), Phys. Rev. D 87 (2013) 034028 [arXiv:1212.1878] [INSPIRE].

    ADS  Google Scholar 

  26. P. Ko, Y. Omura and C. Yu, B → D (∗)τ ν and B → τ ν in chiral U(1) models with flavored multi Higgs doublets, JHEP 03 (2013) 151 [arXiv:1212.4607] [INSPIRE].

    Article  ADS  Google Scholar 

  27. K. Chetyrkin, Quark mass anomalous dimension to \( \mathcal{O}\left( {\alpha_S^4} \right) \) , Phys. Lett. B 404 (1997) 161 [hep-ph/9703278] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Gracey, Three loop MS-bar tensor current anomalous dimension in QCD, Phys. Lett. B 488 (2000) 175 [hep-ph/0007171] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Melikhov and B. Stech, Weak form-factors for heavy meson decays: an update, Phys. Rev. D 62 (2000) 014006 [hep-ph/0001113] [INSPIRE].

    ADS  Google Scholar 

  30. A.F. Falk and M. Neubert, Second order power corrections in the heavy quark effective theory. 1. Formalism and meson form-factors, Phys. Rev. D 47 (1993) 2965 [hep-ph/9209268] [INSPIRE].

    ADS  Google Scholar 

  31. A.F. Falk and M. Neubert, Second order power corrections in the heavy quark effective theory. 2. Baryon form-factors, Phys. Rev. D 47 (1993) 2982 [hep-ph/9209269] [INSPIRE].

    ADS  Google Scholar 

  32. M. Neubert, Short distance expansion of heavy quark currents, Phys. Rev. D 46 (1992) 2212 [INSPIRE].

    ADS  Google Scholar 

  33. G. de Divitiis, R. Petronzio and N. Tantalo, Quenched lattice calculation of semileptonic heavy-light meson form factors, JHEP 10 (2007) 062 [arXiv:0707.0587] [INSPIRE].

    Article  ADS  Google Scholar 

  34. I. Caprini, L. Lellouch and M. Neubert, Dispersive bounds on the shape of \( \overline{B}\to {D^{{\left( * \right)}}}\ell \overline{\nu} \) form-factors, Nucl. Phys. B 530 (1998) 153 [hep-ph/9712417] [INSPIRE].

    Article  ADS  Google Scholar 

  35. N. Isgur and M.B. Wise, Relationship between form-factors in semileptonic \( \overline{B} \) and D decays and exclusive rare \( \overline{B} \) meson decays, Phys. Rev. D 42 (1990) 2388 [INSPIRE].

    ADS  Google Scholar 

  36. K. Hagiwara, A.D. Martin and M. Wade, The semileptonic decays B → M ντ as a probe of hadron dynamics, Z. Phys. C 46 (1990) 299 [INSPIRE].

    Google Scholar 

  37. BaBar collaboration, J. Lees et al., Measurement of an excess of B → D (∗)τ ν decays and implications for charged Higgs bosons, arXiv:1303.0571 [INSPIRE].

  38. B. Batell, S. Gori and L.-T. Wang, Higgs couplings and precision electroweak data, JHEP 01 (2013) 139 [arXiv:1209.6382] [INSPIRE].

    Article  ADS  Google Scholar 

  39. S. Fajfer, A. Greljo, J.F. Kamenik and I. Mustac, Light Higgs and vector-like quarks without prejudice, JHEP 07 (2013) 155 [arXiv:1304.4219] [INSPIRE].

    Article  ADS  Google Scholar 

  40. A. Freitas and Y.-C. Huang, Electroweak two-loop corrections to \( si{n^2}\theta_{\mathrm{eff}}^{{b\overline{b}}} \) and R b using numerical Mellin-Barnes integrals, JHEP 08 (2012) 050 [Erratum ibid. 05 (2013) 074] [Erratum ibid. 10 (2013) 044] [arXiv:1205.0299] [INSPIRE].

    Article  ADS  Google Scholar 

  41. O. Eberhardt et al., Impact of a Higgs boson at a mass of 126 GeV on the Standard Model with three and four fermion generations, Phys. Rev. Lett. 109 (2012) 241802 [arXiv:1209.1101] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Baak et al., The electroweak fit of the Standard Model after the discovery of a new boson at the LHC, Eur. Phys. J. C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].

    Article  ADS  Google Scholar 

  43. ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  44. CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  45. S. Davidson and S. Descotes-Genon, Minimal flavour violation for leptoquarks, JHEP 11 (2010) 073 [arXiv:1009.1998] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M.I. Gresham, I.-W. Kim, S. Tulin and K.M. Zurek, Confronting top AFB with parity violation constraints, Phys. Rev. D 86 (2012) 034029 [arXiv:1203.1320] [INSPIRE].

    ADS  Google Scholar 

  47. F. Jegerlehner and A. Nyffeler, The muon g-2, Phys. Rept. 477 (2009) 1 [arXiv:0902.3360] [INSPIRE].

    Article  ADS  Google Scholar 

  48. M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys. 318 (2005) 119 [hep-ph/0504231] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  49. K.-M. Cheung, Muon anomalous magnetic moment and leptoquark solutions, Phys. Rev. D 64 (2001) 033001 [hep-ph/0102238] [INSPIRE].

    ADS  Google Scholar 

  50. Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP), Phys. Rev. D 86 (2012) 010001 [INSPIRE].

    ADS  Google Scholar 

  51. Belle collaboration, K. Inami et al., Search for the electric dipole moment of the τ lepton, Phys. Lett. B 551 (2003) 16 [hep-ex/0210066] [INSPIRE].

    Article  ADS  Google Scholar 

  52. BaBar collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ±e ±γ andτ±μ ±γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

    Article  ADS  Google Scholar 

  53. MEG collaboration, J. Adam et al., New constraint on the existence of the μ +e +γ decay, arXiv:1303.0754 [INSPIRE].

  54. J.C. Pati and A. Salam, Lepton number as the fourth color, Phys. Rev. D 10 (1974) 275 [Erratum ibid. D 11 (1975) 703] [INSPIRE].

    ADS  Google Scholar 

  55. R. Slansky, Group theory for unified model building, Phys. Rept. 79 (1981) 1 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  56. I. Dorsner, J. Drobnak, S. Fajfer, J.F. Kamenik and N. Kosnik, Limits on scalar leptoquark interactions and consequences for GUTs, JHEP 11 (2011) 002 [arXiv:1107.5393] [INSPIRE].

    Article  ADS  Google Scholar 

  57. B. Bajc and G. Senjanović, Seesaw at LHC, JHEP 08 (2007) 014 [hep-ph/0612029] [INSPIRE].

    Article  ADS  Google Scholar 

  58. P. Fileviez Perez, H. Iminniyaz and G. Rodrigo, Proton stability, dark matter and light color octet scalars in adjoint SU(5) unification, Phys. Rev. D 78 (2008) 015013 [arXiv:0803.4156] [INSPIRE].

    ADS  Google Scholar 

  59. Super-Kamiokande collaboration, H. Nishino et al., Search for nucleon decay into charged anti-lepton plus meson in Super-Kamiokande I and II, Phys. Rev. D 85 (2012) 112001 [arXiv:1203.4030] [INSPIRE].

    ADS  Google Scholar 

  60. M. Miura, Search for nucleon decays in Super-Kamiokande, PoS (ICHEP 2010) 408 [INSPIRE].

  61. Super-Kamiokande collaboration, K. Kobayashi et al., Search for nucleon decay via modes favored by supersymmetric grand unification models in Super-Kamiokande I, Phys. Rev. D 72 (2005) 052007 [hep-ex/0502026] [INSPIRE].

    ADS  Google Scholar 

  62. Super-Kamiokande collaboration, C. Regis et al., Search for proton decay via pμ + K 0 in Super-Kamiokande I, II and III, Phys. Rev. D 86 (2012) 012006 [arXiv:1205.6538] [INSPIRE].

    ADS  Google Scholar 

  63. Super-Kamiokande collaboration, K. Abe et al., A search for nucleon decay via \( n\to \overline{\nu}{\pi^0} \) and \( p\to \overline{\nu}{\pi^{+}} \) in Super-Kamiokande, arXiv:1305.4391 [INSPIRE].

  64. RBC-UKQCD collaboration, Y. Aoki et al., Proton lifetime bounds from chirally symmetric lattice QCD, Phys. Rev. D 78 (2008) 054505 [arXiv:0806.1031] [INSPIRE].

    ADS  Google Scholar 

  65. P. Fileviez Perez, Fermion mixings versus D = 6 proton decay, Phys. Lett. B 595 (2004) 476 [hep-ph/0403286] [INSPIRE].

    Article  ADS  Google Scholar 

  66. I. Dorsner and P. Fileviez Perez, Could we rotate proton decay away?, Phys. Lett. B 606 (2005) 367 [hep-ph/0409190] [INSPIRE].

    Article  ADS  Google Scholar 

  67. I. Dorsner and P. Fileviez Perez, How long could we live?, Phys. Lett. B 625 (2005) 88 [hep-ph/0410198] [INSPIRE].

    Article  ADS  Google Scholar 

  68. A. De Rujula, H. Georgi and S. Glashow, Flavor goniometry by proton decay, Phys. Rev. Lett. 45 (1980) 413 [INSPIRE].

    Article  ADS  Google Scholar 

  69. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  70. C. McNeile, C. Davies, E. Follana, K. Hornbostel and G. Lepage, Heavy meson masses and decay constants from relativistic heavy quarks in full lattice QCD, Phys. Rev. D 86 (2012) 074503 [arXiv:1207.0994] [INSPIRE].

    ADS  Google Scholar 

  71. A. Celis, M. Jung, X.-Q. Li and A. Pich, B → D (∗)τ ντ decays in two-Higgs-doublet models, J. Phys. Conf. Ser. 447 (2013) 012058 [arXiv:1302.5992] [INSPIRE].

    Article  ADS  Google Scholar 

  72. LHCb collaboration, First observation of the decay \( B_c^{+}\to {J \left/ {{\psi {\pi^{+}}{\pi^{-}}{\pi^{+}}}} \right.} \) , Phys. Rev. Lett. 108 (2012) 251802 [arXiv:1204.0079] [INSPIRE].

    Article  Google Scholar 

  73. E.N. Glover et al., Top quark physics at colliders, Acta Phys. Polon. B 35 (2004) 2671 [hep-ph/0410110] [INSPIRE].

    ADS  Google Scholar 

  74. Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron, C-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

  75. J. Korner and G. Schuler, Exclusive semileptonic heavy meson decays including lepton mass effects, Z. Phys. C 46 (1990) 93 [INSPIRE].

    ADS  Google Scholar 

  76. J. Korner and G. Schuler, Exclusive semileptonic decays of bottom mesons in the spectator quark model, Z. Phys. C 38 (1988) 511 [Erratum ibid. C 41 (1989) 690] [INSPIRE].

    ADS  Google Scholar 

  77. Belle collaboration, W. Dungel et al., Measurement of the form factors of the decay B 0D ∗−+ν and determination of the CKM matrix element |V cb|, Phys. Rev. D 82 (2010) 112007 [arXiv:1010.5620] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nejc Košnik.

Additional information

ArXiv ePrint: 1306.6493

Rights and permissions

Reprints and permissions

About this article

Cite this article

Doršner, I., Fajfer, S., Košnik, N. et al. Minimally flavored colored scalar in \( \overline{B}\to {D^{{\left( * \right)}}}\tau \overline{\nu} \) and the mass matrices constraints. J. High Energ. Phys. 2013, 84 (2013). https://doi.org/10.1007/JHEP11(2013)084

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)084

Keywords

Navigation