Skip to main content
Log in

Models with radiative neutrino masses and viable dark matter candidates

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

We provide a list of particle physics models at the TeV-scale that are compatible with neutrino masses and dark matter. In these models, the Standard Model particle content is extended with a small number (≤ 4) of scalar and fermion fields transforming as singlets, doublets or triplets under SU(2), and neutrino masses are generated radiatively via 1-loop diagrams. The dark matter candidates are stabilized by a Z 2 symmetry and are in general mixtures of the neutral components of such new multiplets. We describe the particle content of each of these models and determine the conditions under which they are consistent with current data. We find a total of 35 viable models, most of which have not been previously studied in the literature. There is a great potential to test these models at the LHC not only due to the TeV-scale masses of the new fields but also because about half of the viable models contain particles with exotic electric charges, which give rise to background-free signals. Our results should serve as a first step for detailed analysis of models that can simultaneously account for dark matter and neutrino masses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Planck collaboration, P. Ade et al., Planck 2013 results. XVI. Cosmological parameters, arXiv:1303.5076 [INSPIRE].

  2. WMAP collaboration, E. Komatsu et al., Seven-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: cosmological interpretation, Astrophys. J. Suppl. 192 (2011) 18 [arXiv:1001.4538] [INSPIRE].

    Article  ADS  Google Scholar 

  3. Super-Kamiokande collaboration, Y. Fukuda et al., Evidence for oscillation of atmospheric neutrinos, Phys. Rev. Lett. 81 (1998) 1562 [hep-ex/9807003] [INSPIRE].

    Article  ADS  Google Scholar 

  4. SNO collaboration, Q. Ahmad et al., Direct evidence for neutrino flavor transformation from neutral current interactions in the Sudbury Neutrino Observatory, Phys. Rev. Lett. 89 (2002) 011301 [nucl-ex/0204008] [INSPIRE].

    Article  ADS  Google Scholar 

  5. KamLAND collaboration, T. Araki et al., Measurement of neutrino oscillation with KamLAND: evidence of spectral distortion, Phys. Rev. Lett. 94 (2005) 081801 [hep-ex/0406035] [INSPIRE].

    Article  ADS  Google Scholar 

  6. MINOS collaboration, P. Adamson et al., Measurement of neutrino oscillations with the MINOS detectors in the NuMI beam, Phys. Rev. Lett. 101 (2008) 131802 [arXiv:0806.2237] [INSPIRE].

    Article  ADS  Google Scholar 

  7. P. Minkowski, μeγ at a rate of one out of 1-billion muon decays?, Phys. Lett. B 67 (1977)421 [INSPIRE].

    Article  ADS  Google Scholar 

  8. T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].

    Google Scholar 

  9. M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].

    Google Scholar 

  10. R.N. Mohapatra and G. Senjanović, Neutrino mass and spontaneous parity violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].

    Article  ADS  Google Scholar 

  11. M. Magg and C. Wetterich, Neutrino mass problem and gauge hierarchy, Phys. Lett. B 94 (1980)61 [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Schechter and J. Valle, Neutrino masses in SU(2) × U(1) theories, Phys. Rev. D 22 (1980) 2227 [INSPIRE].

    ADS  Google Scholar 

  13. C. Wetterich, Neutrino masses and the scale of B-L violation, Nucl. Phys. B 187 (1981) 343 [INSPIRE].

    Article  ADS  Google Scholar 

  14. G. Lazarides, Q. Shafi and C. Wetterich, Proton lifetime and fermion masses in an SO(10) model, Nucl. Phys. B 181 (1981) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  15. R.N. Mohapatra and G. Senjanović, Neutrino masses and mixings in gauge models with spontaneous parity violation, Phys. Rev. D 23 (1981) 165 [INSPIRE].

    ADS  Google Scholar 

  16. T. Cheng and L.-F. Li, Neutrino masses, mixings and oscillations in SU(2) × U(1) models of electroweak interactions, Phys. Rev. D 22 (1980) 2860 [INSPIRE].

    ADS  Google Scholar 

  17. R. Foot, H. Lew, X. He and G.C. Joshi, Seesaw neutrino masses induced by a triplet of leptons, Z. Phys. C 44 (1989) 441 [INSPIRE].

    Google Scholar 

  18. D. Wyler and L. Wolfenstein, Massless neutrinos in left-right symmetric models, Nucl. Phys. B 218 (1983) 205 [INSPIRE].

    Article  ADS  Google Scholar 

  19. R. Mohapatra and J. Valle, Neutrino mass and baryon number nonconservation in superstring models, Phys. Rev. D 34 (1986) 1642 [INSPIRE].

    ADS  Google Scholar 

  20. E. Ma, Lepton number nonconservation in E 6 superstring models, Phys. Lett. B 191 (1987) 287 [INSPIRE].

    Article  ADS  Google Scholar 

  21. P.B. Dev and A. Pilaftsis, Minimal radiative neutrino mass mechanism for inverse seesaw models, Phys. Rev. D 86 (2012) 113001 [arXiv:1209.4051] [INSPIRE].

    ADS  Google Scholar 

  22. A. Zee, A theory of lepton number violation, neutrino Majorana mass and oscillation, Phys. Lett. B 93 (1980) 389 [Erratum ibid. B 95 (1980) 461] [INSPIRE].

    Article  ADS  Google Scholar 

  23. K. Babu, Model ofcalculableMajorana neutrino masses, Phys. Lett. B 203 (1988) 132 [INSPIRE].

    Article  ADS  Google Scholar 

  24. E. Ma, Pathways to naturally small neutrino masses, Phys. Rev. Lett. 81 (1998) 1171 [hep-ph/9805219] [INSPIRE].

    Article  ADS  Google Scholar 

  25. A. Pilaftsis, Radiatively induced neutrino masses and large Higgs neutrino couplings in the standard model with Majorana fields, Z. Phys. C 55 (1992) 275 [hep-ph/9901206] [INSPIRE].

    ADS  Google Scholar 

  26. M. Hirsch, M. Diaz, W. Porod, J. Romao and J. Valle, Neutrino masses and mixings from supersymmetry with bilinear R parity violation: a theory for solar and atmospheric neutrino oscillations, Phys. Rev. D 62 (2000) 113008 [Erratum ibid. D 65 (2002) 119901] [hep-ph/0004115] [INSPIRE].

    ADS  Google Scholar 

  27. G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    Article  ADS  Google Scholar 

  28. E. Ma, Verifiable radiative seesaw mechanism of neutrino mass and dark matter, Phys. Rev. D 73 (2006) 077301 [hep-ph/0601225] [INSPIRE].

    ADS  Google Scholar 

  29. L.M. Krauss, S. Nasri and M. Trodden, A model for neutrino masses and dark matter, Phys. Rev. D 67 (2003) 085002 [hep-ph/0210389] [INSPIRE].

    ADS  Google Scholar 

  30. K. Cheung and O. Seto, Phenomenology of TeV right-handed neutrino and the dark matter model, Phys. Rev. D 69 (2004) 113009 [hep-ph/0403003] [INSPIRE].

    ADS  Google Scholar 

  31. F. Bonnet, M. Hirsch, T. Ota and W. Winter, Systematic study of the D = 5 Weinberg operator at one-loop order, JHEP 07 (2012) 153 [arXiv:1204.5862] [INSPIRE].

    Article  ADS  Google Scholar 

  32. S.S. Law and K.L. McDonald, A class of inert N-tuplet models with radiative neutrino mass and dark matter, JHEP 09 (2013) 092 [arXiv:1305.6467] [INSPIRE].

    Article  ADS  Google Scholar 

  33. D. Aristizabal Sierra and D. Restrepo, Leptonic charged Higgs decays in the Zee model, JHEP 08 (2006) 036 [hep-ph/0604012] [INSPIRE].

    Article  ADS  Google Scholar 

  34. P. Fileviez Perez and M.B. Wise, On the origin of neutrino masses, Phys. Rev. D 80 (2009) 053006 [arXiv:0906.2950] [INSPIRE].

    ADS  Google Scholar 

  35. S. Choubey, M. Duerr, M. Mitra and W. Rodejohann, Lepton number and lepton flavor violation through color octet states, JHEP 05 (2012) 017 [arXiv:1201.3031] [INSPIRE].

    Article  ADS  Google Scholar 

  36. M. Cirelli, N. Fornengo and A. Strumia, Minimal dark matter, Nucl. Phys. B 753 (2006) 178 [hep-ph/0512090] [INSPIRE].

    Article  ADS  Google Scholar 

  37. Y. Farzan, A minimal model linking two great mysteries: neutrino mass and dark matter, Phys. Rev. D 80 (2009) 073009 [arXiv:0908.3729] [INSPIRE].

    ADS  Google Scholar 

  38. Y. Farzan, S. Pascoli and M.A. Schmidt, Recipes and ingredients for neutrino mass at loop level, JHEP 03 (2013) 107 [arXiv:1208.2732] [INSPIRE].

    Article  ADS  Google Scholar 

  39. E. Ma and D. Suematsu, Fermion triplet dark matter and radiative neutrino mass, Mod. Phys. Lett. A 24 (2009) 583 [arXiv:0809.0942] [INSPIRE].

    Article  ADS  Google Scholar 

  40. Y. Farzan, S. Pascoli and M.A. Schmidt, AMEND: a model explaining neutrino masses and dark matter testable at the LHC and MEG, JHEP 10 (2010) 111 [arXiv:1005.5323] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Aoki, S. Kanemura and K. Yagyu, Doubly-charged scalar bosons from the doublet, Phys. Lett. B 702 (2011) 355 [Erratum ibid. B 706 (2012) 495] [arXiv:1105.2075] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. Kanemura and H. Sugiyama, Dark matter and a suppression mechanism for neutrino masses in the Higgs triplet model, Phys. Rev. D 86 (2012) 073006 [arXiv:1202.5231] [INSPIRE].

    ADS  Google Scholar 

  43. M. Gonzalez-Garcia, M. Maltoni, J. Salvado and T. Schwetz, Global fit to three neutrino mixing: critical look at present precision, JHEP 12 (2012) 123 [arXiv:1209.3023] [INSPIRE].

    Article  ADS  Google Scholar 

  44. M. Hirsch et al., WIMP dark matter as radiative neutrino mass messenger, arXiv:1307.8134 [INSPIRE].

  45. J. Casas and A. Ibarra, Oscillating neutrinos and muone, γ, Nucl. Phys. B 618 (2001) 171 [hep-ph/0103065] [INSPIRE].

    Article  ADS  Google Scholar 

  46. MEG collaboration, J. Adam et al., New constraint on the existence of the μ + → e +γ decay, arXiv:1303.0754 [INSPIRE].

  47. BaBar collaboration, B. Aubert et al., Searches for lepton flavor violation in the decays τ ±e ±γ and τ ±μ p mγ, Phys. Rev. Lett. 104(2010)021802[arXiv:0908.2381] [INSPIRE].

    Article  ADS  Google Scholar 

  48. J. Kubo, E. Ma and D. Suematsu, Cold dark matter, radiative neutrino mass, μeγ and neutrinoless double beta decay, Phys. Lett. B 642 (2006) 18 [hep-ph/0604114] [INSPIRE].

    Article  ADS  Google Scholar 

  49. J. Hisano, S. Matsumoto and M.M. Nojiri, Explosive dark matter annihilation, Phys. Rev. Lett. 92 (2004) 031303 [hep-ph/0307216] [INSPIRE].

    Article  ADS  Google Scholar 

  50. J. Hisano, S. Matsumoto, M.M. Nojiri and O. Saito, Non-perturbative effect on dark matter annihilation and gamma ray signature from galactic center, Phys. Rev. D 71 (2005) 063528 [hep-ph/0412403] [INSPIRE].

    Google Scholar 

  51. J.L. Feng, M. Kaplinghat and H.-B. Yu, Sommerfeld enhancements for thermal relic dark matter, Phys. Rev. D 82 (2010) 083525 [arXiv:1005.4678] [INSPIRE].

    ADS  Google Scholar 

  52. XENON100 collaboration, E. Aprile et al., Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109 (2012) 181301 [arXiv:1207.5988] [INSPIRE].

    Article  ADS  Google Scholar 

  53. XENON1T collaboration, E. Aprile, The XENON1T dark matter search experiment, arXiv:1206.6288 [INSPIRE].

  54. J. Fan and M. Reece, In wino veritas? Indirect searches shed light on neutralino dark matter, arXiv:1307.4400 [INSPIRE].

  55. T. Cohen, M. Lisanti, A. Pierce and T.R. Slatyer, Wino dark matter under siege, arXiv:1307.4082 [INSPIRE].

  56. J. Liu, B. Shuve, N. Weiner and I. Yavin, Looking for new charged states at the LHC: signatures of magnetic and Rayleigh dark matter, JHEP 07 (2013) 144 [arXiv:1303.4404] [INSPIRE].

    Article  ADS  Google Scholar 

  57. T. Li and X.-G. He, Neutrino masses and heavy triplet leptons at the LHC: testability of type III seesaw, Phys. Rev. D 80 (2009) 093003 [arXiv:0907.4193] [INSPIRE].

    ADS  Google Scholar 

  58. P. Fileviez Perez, H.H. Patel, M. Ramsey-Musolf and K. Wang, Triplet scalars and dark matter at the LHC, Phys. Rev. D 79 (2009) 055024 [arXiv:0811.3957] [INSPIRE].

    ADS  Google Scholar 

  59. S. Biondini, O. Panella, G. Pancheri, Y. Srivastava and L. Fano, Phenomenology of excited doubly charged heavy leptons at LHC, Phys. Rev. D 85 (2012) 095018 [arXiv:1201.3764] [INSPIRE].

    ADS  Google Scholar 

  60. C.-W. Chiang, T. Nomura and K. Tsumura, Search for doubly charged Higgs bosons using the same-sign diboson mode at the LHC, Phys. Rev. D 85 (2012) 095023 [arXiv:1202.2014] [INSPIRE].

    ADS  Google Scholar 

  61. CMS collaboration, Higgs searches at CMS, arXiv:1301.3405 [INSPIRE].

  62. CMS collaboration, A search for a doubly-charged Higgs boson in pp collisions at \( \sqrt{s} \) = 7 TeV, Eur. Phys. J. C 72 (2012) 2189 [arXiv:1207.2666] [INSPIRE].

    ADS  Google Scholar 

  63. ATLAS collaboration, Search for doubly-charged Higgs bosons in like-sign dilepton final states at \( \sqrt{s} \) = 7 TeV with the ATLAS detector, Eur. Phys. J. C 72 (2012) 2244 [arXiv:1210.5070] [INSPIRE].

    Article  ADS  Google Scholar 

  64. CMS collaboration, Search for heavy lepton partners of neutrinos in proton-proton collisions in the context of the type-III seesaw mechanism, Phys. Lett. B 718 (2012) 348 [arXiv:1210.1797] [INSPIRE].

    ADS  Google Scholar 

  65. D. Aristizabal Sierra, J. Kubo, D. Restrepo, D. Suematsu and O. Zapata, Radiative seesaw: warm dark matter, collider and lepton flavour violating signals, Phys. Rev. D 79 (2009) 013011 [arXiv:0808.3340] [INSPIRE].

    ADS  Google Scholar 

  66. M. Aoki and S. Kanemura, Probing the Majorana nature of TeV-scale radiative seesaw models at collider experiments, Phys. Lett. B 689 (2010) 28 [arXiv:1001.0092] [INSPIRE].

    Article  ADS  Google Scholar 

  67. M. Klasen, C.E. Yaguna, J.D. Ruiz-Alvarez, D. Restrepo and O. Zapata, Scalar dark matter and fermion coannihilations in the radiative seesaw model, JCAP 04 (2013) 044 [arXiv:1302.5298] [INSPIRE].

    Article  ADS  Google Scholar 

  68. ATLAS collaboration, Search for supersymmetry in events with four or more leptons in 21 fb −1 of pp collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, ATLAS-CONF-2013-036 [INSPIRE].

  69. CMS collaboration, Search for electroweak production of charginos and neutralinos using leptonic final states in pp collisions at \( \sqrt{s} \) = 7 TeV, JHEP 11 (2012) 147 [arXiv:1209.6620] [INSPIRE].

    ADS  Google Scholar 

  70. Y. Farzan and M. Hashemi, SLIM at LHC: LHC search power for a model linking dark matter and neutrino mass, JHEP 11 (2010) 029 [arXiv:1009.0829] [INSPIRE].

    Article  ADS  Google Scholar 

  71. M. Hirsch, S. Morisi, E. Peinado and J. Valle, Discrete dark matter, Phys. Rev. D 82 (2010) 116003 [arXiv:1007.0871] [INSPIRE].

    ADS  Google Scholar 

  72. D. Meloni, S. Morisi and E. Peinado, Neutrino phenomenology and stable dark matter with A 4, Phys. Lett. B 697 (2011) 339 [arXiv:1011.1371] [INSPIRE].

    Article  ADS  Google Scholar 

  73. M. Boucenna et al., Phenomenology of dark matter from A 4 flavor symmetry, JHEP 05 (2011)037 [arXiv:1101.2874] [INSPIRE].

    Article  ADS  Google Scholar 

  74. D. Meloni, S. Morisi and E. Peinado, Stability of dark matter from the D 4 × Z 2 flavor group, Phys. Lett. B 703 (2011) 281 [arXiv:1104.0178] [INSPIRE].

    Article  ADS  Google Scholar 

  75. L. Lavoura, On a possible relationship between lepton mixing and the stability of dark matter, J. Phys. G 39 (2012) 025202 [arXiv:1109.6854] [INSPIRE].

    Article  ADS  Google Scholar 

  76. M. Boucenna, S. Morisi, E. Peinado, Y. Shimizu and J. Valle, Predictive discrete dark matter model and neutrino oscillations, Phys. Rev. D 86 (2012) 073008 [arXiv:1204.4733] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Zapata.

Additional information

ArXiv ePrint: 1308.3655

Rights and permissions

Reprints and permissions

About this article

Cite this article

Restrepo, D., Zapata, O. & Yaguna, C.E. Models with radiative neutrino masses and viable dark matter candidates. J. High Energ. Phys. 2013, 11 (2013). https://doi.org/10.1007/JHEP11(2013)011

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2013)011

Keywords

Navigation