Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Repressing anarchy in neutrino mass textures

  • Open access
  • Published: 23 November 2012
  • Volume 2012, article number 139, (2012)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Repressing anarchy in neutrino mass textures
Download PDF
  • Guido Altarelli1,2,
  • Ferruccio Feruglio3,
  • Isabella Masina4,5 &
  • …
  • Luca Merlo6,7 
  • 605 Accesses

  • Explore all metrics

Abstract

The recent results that θ 13 is relatively large, of the order of the previous upper bound, and the indications of a sizable deviation of θ 23 from the maximal value are in agreement with the predictions of Anarchy in the lepton sector. The quark and charged lepton hierarchies can then be reproduced in a SU(5) GUT context by attributing non-vanishing U(1)FN charges, different for each family, only to the SU(5) tenplet states. The fact that the observed mass hierarchies are stronger for up quarks than for down quarks and charged leptons supports this idea. As discussed in the past, in the flexible context of SU(5) ⊗ U(1)FN, different patterns of charges can be adopted going from Anarchy to various types of hierarchy. We revisit this approach by also considering new models and we compare all versions to the present data. As a result we confirm that, by relaxing the ansatz of equal U(1)FN charges for all SU(5) pentaplets and singlets, better agreement with the data than for Anarchy is obtained without increasing the model complexity. We also present the distributions obtained in the different models for the Dirac CP-violating phase. Finally we discuss the relative merits of these simple models.

Article PDF

Download to read the full article text

Similar content being viewed by others

Edge of a cliff

Article Open access 10 October 2016

Covert symmetries in the neutrino mass matrix

Article Open access 11 February 2020

Natural neutrino sector in a 331-model with Froggatt-Nielsen mechanism

Article Open access 26 February 2020
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. G. Fogli et al., Global analysis of neutrino masses, mixings and phases: entering the era of leptonic CP-violation searches, Phys. Rev. D 86 (2012) 013012 [arXiv:1205.5254] [INSPIRE].

    ADS  Google Scholar 

  2. D. Forero, M. Tortola and J. Valle, Global status of neutrino oscillation parameters after Neutrino-2012, Phys. Rev. D 86 (2012) 073012 [arXiv:1205.4018] [INSPIRE].

    ADS  Google Scholar 

  3. T2K collaboration, K. Abe et al., Indication of electron neutrino appearance from an accelerator-produced off-axis muon neutrino beam, Phys. Rev. Lett. 107 (2011) 041801 [arXiv:1106.2822] [INSPIRE].

    Article  ADS  Google Scholar 

  4. DOUBLE-CHOOZ collaboration, Y. Abe et al., Indication for the disappearance of reactor electron antineutrinos in the Double CHOOZ experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].

    Article  ADS  Google Scholar 

  5. DAYA-BAY collaboration, F. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].

    Article  ADS  Google Scholar 

  6. RENO collaboration, J. Ahn et al., Observation of reactor electron antineutrino disappearance in the RENO experiment, Phys. Rev. Lett. 108 (2012) 191802 [arXiv:1204.0626] [INSPIRE].

    Article  ADS  Google Scholar 

  7. CHOOZ collaboration, M. Apollonio et al., Limits on neutrino oscillations from the CHOOZ experiment, Phys. Lett. B 466 (1999) 415 [hep-ex/9907037] [INSPIRE].

    ADS  Google Scholar 

  8. L.J. Hall, H. Murayama and N. Weiner, Neutrino mass anarchy, Phys. Rev. Lett. 84 (2000) 2572 [hep-ph/9911341] [INSPIRE].

    Article  ADS  Google Scholar 

  9. N. Haba and H. Murayama, Anarchy and hierarchy, Phys. Rev. D 63 (2001) 053010 [hep-ph/0009174] [INSPIRE].

    ADS  Google Scholar 

  10. A. de Gouvêa and H. Murayama, Statistical test of anarchy, Phys. Lett. B 573 (2003) 94 [hep-ph/0301050] [INSPIRE].

    ADS  Google Scholar 

  11. A. de Gouvêa and H. Murayama, Neutrino mixing anarchy: alive and kicking, arXiv:1204.1249 [INSPIRE].

  12. C. Froggatt and H.B. Nielsen, Hierarchy of quark masses, Cabibbo angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. Harrison, D. Perkins and W. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].

    ADS  Google Scholar 

  14. P. Harrison and W. Scott, Symmetries and generalizations of tri-bimaximal neutrino mixing, Phys. Lett. B 535 (2002) 163 [hep-ph/0203209] [INSPIRE].

    ADS  Google Scholar 

  15. Z.-z. Xing, Nearly tri bimaximal neutrino mixing and CP-violation, Phys. Lett. B 533 (2002) 85 [hep-ph/0204049] [INSPIRE].

    ADS  Google Scholar 

  16. P. Harrison and W. Scott, μ-τ reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [INSPIRE].

    ADS  Google Scholar 

  17. P. Harrison and W. Scott, Permutation symmetry, tri-bimaximal neutrino mixing and the S 3 group characters, Phys. Lett. B 557 (2003) 76 [hep-ph/0302025] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  18. Y. Kajiyama, M. Raidal and A. Strumia, The golden ratio prediction for the solar neutrino mixing, Phys. Rev. D 76 (2007) 117301 [arXiv:0705.4559] [INSPIRE].

    ADS  Google Scholar 

  19. L.L. Everett and A.J. Stuart, Icosahedral (A 5 ) family symmetry and the golden ratio prediction for solar neutrino mixing, Phys. Rev. D 79 (2009) 085005 [arXiv:0812.1057] [INSPIRE].

    ADS  Google Scholar 

  20. G.-J. Ding, L.L. Everett and A.J. Stuart, Golden ratio neutrino mixing and A 5 flavor symmetry, Nucl. Phys. B 857 (2012) 219 [arXiv:1110.1688] [INSPIRE].

    Article  ADS  Google Scholar 

  21. F. Feruglio and A. Paris, The golden ratio prediction for the solar angle from a natural model with A 5 flavour symmetry, JHEP 03 (2011) 101 [arXiv:1101.0393] [INSPIRE].

    Article  ADS  Google Scholar 

  22. W. Rodejohann, Unified parametrization for quark and lepton mixing angles, Phys. Lett. B 671 (2009) 267 [arXiv:0810.5239] [INSPIRE].

    ADS  Google Scholar 

  23. A. Adulpravitchai, A. Blum and W. Rodejohann, Golden ratio prediction for solar neutrino mixing, New J. Phys. 11 (2009) 063026 [arXiv:0903.0531] [INSPIRE].

    Article  ADS  Google Scholar 

  24. F. Vissani, A study of the scenario with nearly degenerate Majorana neutrinos, hep-ph/9708483 [INSPIRE].

  25. V.D. Barger, S. Pakvasa, T.J. Weiler and K. Whisnant, Bimaximal mixing of three neutrinos, Phys. Lett. B 437 (1998) 107 [hep-ph/9806387] [INSPIRE].

    ADS  Google Scholar 

  26. Y. Nomura and T. Yanagida, Bimaximal neutrino mixing in SO(10)(GUT), Phys. Rev. D 59 (1999) 017303 [hep-ph/9807325] [INSPIRE].

    ADS  Google Scholar 

  27. G. Altarelli and F. Feruglio, Models of neutrino masses from oscillations with maximal mixing, JHEP 11 (1998) 021 [hep-ph/9809596] [INSPIRE].

    Article  ADS  Google Scholar 

  28. M. Raidal, Relation between the neutrino and quark mixing angles and grand unification, Phys. Rev. Lett. 93 (2004) 161801 [hep-ph/0404046] [INSPIRE].

    Article  ADS  Google Scholar 

  29. H. Minakata and A.Y. Smirnov, Neutrino mixing and quark-lepton complementarity, Phys. Rev. D 70 (2004) 073009 [hep-ph/0405088] [INSPIRE].

    ADS  Google Scholar 

  30. H. Minakata, Quark-lepton complementarity: a review, hep-ph/0505262 [INSPIRE].

  31. P. Frampton and R. Mohapatra, Possible gauge theoretic origin for quark-lepton complementarity, JHEP 01 (2005) 025 [hep-ph/0407139] [INSPIRE].

    Article  ADS  Google Scholar 

  32. J. Ferrandis and S. Pakvasa, Quark-lepton complenmentarity relation and neutrino mass hierarchy, Phys. Rev. D 71 (2005) 033004 [hep-ph/0412038] [INSPIRE].

    ADS  Google Scholar 

  33. S.K. Kang, C. Kim and J. Lee, Importance of threshold corrections in quark-lepton complementarity, Phys. Lett. B 619 (2005) 129 [hep-ph/0501029] [INSPIRE].

    ADS  Google Scholar 

  34. G. Altarelli, F. Feruglio and I. Masina, Can neutrino mixings arise from the charged lepton sector?, Nucl. Phys. B 689 (2004) 157 [hep-ph/0402155] [INSPIRE].

    Article  ADS  Google Scholar 

  35. N. Li and B.-Q. Ma, Unified parametrization of quark and lepton mixing matrices, Phys. Rev. D 71 (2005) 097301 [hep-ph/0501226] [INSPIRE].

    ADS  Google Scholar 

  36. K. Cheung, S.K. Kang, C. Kim and J. Lee, Lepton flavor violation as a probe of quark-lepton unification, Phys. Rev. D 72 (2005) 036003 [hep-ph/0503122] [INSPIRE].

    ADS  Google Scholar 

  37. Z.-z. Xing, Nontrivial correlation between the CKM and MNS matrices, Phys. Lett. B 618 (2005) 141 [hep-ph/0503200] [INSPIRE].

    ADS  Google Scholar 

  38. A. Datta, L. Everett and P. Ramond, Cabibbo haze in lepton mixing, Phys. Lett. B 620 (2005) 42 [hep-ph/0503222] [INSPIRE].

    ADS  Google Scholar 

  39. T. Ohlsson, Bimaximal fermion mixing from the quark and leptonic mixing matrices, Phys. Lett. B 622 (2005) 159 [hep-ph/0506094] [INSPIRE].

    ADS  Google Scholar 

  40. S. Antusch, S.F. King and R.N. Mohapatra, Quark-lepton complementarity in unified theories, Phys. Lett. B 618 (2005) 150 [hep-ph/0504007] [INSPIRE].

    ADS  Google Scholar 

  41. M. Lindner, M.A. Schmidt and A.Y. Smirnov, Screening of Dirac flavor structure in the seesaw and neutrino mixing, JHEP 07 (2005) 048 [hep-ph/0505067] [INSPIRE].

    Article  ADS  Google Scholar 

  42. S. King, Predicting neutrino parameters from SO(3) family symmetry and quark-lepton unification, JHEP 08 (2005) 105 [hep-ph/0506297] [INSPIRE].

    Article  ADS  Google Scholar 

  43. I. Masina, A maximal atmospheric mixing from a maximal CP-violating phase, Phys. Lett. B 633 (2006) 134 [hep-ph/0508031] [INSPIRE].

    ADS  Google Scholar 

  44. A. Dighe, S. Goswami and P. Roy, Quark-lepton complementarity with quasidegenerate Majorana neutrinos, Phys. Rev. D 73 (2006) 071301 [hep-ph/0602062] [INSPIRE].

    ADS  Google Scholar 

  45. B.C. Chauhan, M. Picariello, J. Pulido and E. Torrente-Lujan, Quark-lepton complementarity, neutrino and standard model data predict (\( \theta_{13}^{PMNS }=9_{-2}^{+1 } \))°, Eur. Phys. J. C 50 (2007) 573 [hep-ph/0605032] [INSPIRE].

    Article  ADS  Google Scholar 

  46. M.A. Schmidt and A.Y. Smirnov, Quark lepton complementarity and renormalization group effects, Phys. Rev. D 74 (2006) 113003 [hep-ph/0607232] [INSPIRE].

    ADS  Google Scholar 

  47. K.A. Hochmuth and W. Rodejohann, Low and high energy phenomenology of quark-lepton complementarity scenarios, Phys. Rev. D 75 (2007) 073001 [hep-ph/0607103] [INSPIRE].

    ADS  Google Scholar 

  48. F. Plentinger, G. Seidl and W. Winter, Systematic parameter space search of extended quark-lepton complementarity, Nucl. Phys. B 791 (2008) 60 [hep-ph/0612169] [INSPIRE].

    Article  ADS  Google Scholar 

  49. F. Plentinger, G. Seidl and W. Winter, The seesaw mechanism in quark-lepton complementarity, Phys. Rev. D 76 (2007) 113003 [arXiv:0707.2379] [INSPIRE].

    ADS  Google Scholar 

  50. G. Altarelli, F. Feruglio and L. Merlo, Revisiting bimaximal neutrino mixing in a model with S 4 discrete symmetry, JHEP 05 (2009) 020 [arXiv:0903.1940] [INSPIRE].

    Article  ADS  Google Scholar 

  51. R. de Adelhart Toorop, F. Bazzocchi and L. Merlo, The interplay between GUT and flavour symmetries in a Pati-Salam ×S 4 model, JHEP 08 (2010) 001 [arXiv:1003.4502] [INSPIRE].

    Article  Google Scholar 

  52. K.M. Patel, An SO(10) × S 4 model of quark-lepton complementarity, Phys. Lett. B 695 (2011) 225 [arXiv:1008.5061] [INSPIRE].

    ADS  Google Scholar 

  53. D. Meloni, Bimaximal mixing and large θ 13 in a SUSY SU(5) model based on S 4, JHEP 10 (2011) 010 [arXiv:1107.0221] [INSPIRE].

    Article  ADS  Google Scholar 

  54. Y. Shimizu and R. Takahashi, Deviations from tri-bimaximality and quark-lepton complementarity, Europhys. Lett. 93 (2011) 61001 [arXiv:1009.5504] [INSPIRE].

    Article  ADS  Google Scholar 

  55. Y. Ahn, H.-Y. Cheng and S. Oh, Quark-lepton complementarity and tribimaximal neutrino mixing from discrete symmetry, Phys. Rev. D 83 (2011) 076012 [arXiv:1102.0879] [INSPIRE].

    ADS  Google Scholar 

  56. G. Altarelli and F. Feruglio, Discrete flavor symmetries and models of neutrino mixing, Rev. Mod. Phys. 82 (2010) 2701 [arXiv:1002.0211] [INSPIRE].

    Article  ADS  Google Scholar 

  57. H. Ishimori et al., Non-abelian discrete symmetries in particle physics, Prog. Theor. Phys. Suppl. 183 (2010) 1 [arXiv:1003.3552] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. W. Grimus and P. Ludl, Principal series of finite subgroups of SU(3), J. Phys. A 43 (2010) 445209 [arXiv:1006.0098] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  59. K.M. Parattu and A. Wingerter, Tribimaximal mixing from small groups, Phys. Rev. D 84 (2011) 013011 [arXiv:1012.2842] [INSPIRE].

    ADS  Google Scholar 

  60. W. Grimus and P.O. Ludl, Finite flavour groups of fermions, J. Phys. A 45 (2012) 233001 [arXiv:1110.6376] [INSPIRE].

    ADS  Google Scholar 

  61. G. Altarelli, F. Feruglio and L. Merlo, Tri-bimaximal neutrino mixing and discrete flavour symmetries, arXiv:1205.5133 [INSPIRE].

  62. F. Bazzocchi and L. Merlo, Neutrino mixings and the S 4 discrete flavour symmetry, arXiv:1205.5135 [INSPIRE].

  63. G. Altarelli, F. Feruglio and I. Masina, Models of neutrino masses: anarchy versus hierarchy, JHEP 01 (2003) 035 [hep-ph/0210342] [INSPIRE].

    Article  ADS  Google Scholar 

  64. W. Buchmüller and T. Yanagida, Quark lepton mass hierarchies and the baryon asymmetry, Phys. Lett. B 445 (1999) 399 [hep-ph/9810308] [INSPIRE].

    ADS  Google Scholar 

  65. W. Buchmüller, V. Domcke and K. Schmitz, Predicting θ 13 and the neutrino mass scale from quark lepton mass hierarchies, JHEP 03 (2012) 008 [arXiv:1111.3872] [INSPIRE].

    Article  ADS  Google Scholar 

  66. G. Altarelli and F. Feruglio, Models of neutrino masses and mixings, New J. Phys. 6 (2004) 106 [hep-ph/0405048] [INSPIRE].

    Article  ADS  Google Scholar 

  67. N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].

    ADS  Google Scholar 

  68. G. Altarelli and G. Blankenburg, Different SO(10) paths to fermion masses and mixings, JHEP 03 (2011) 133 [arXiv:1012.2697] [INSPIRE].

    Article  ADS  Google Scholar 

  69. F. Vissani, Expected properties of massive neutrinos for mass matrices with a dominant block and random coefficients order unity, Phys. Lett. B 508 (2001) 79 [hep-ph/0102236] [INSPIRE].

    ADS  Google Scholar 

  70. I. Masina and C.A. Savoy, On power and complementarity of the experimental constraints on seesaw models, Phys. Rev. D 71 (2005) 093003 [hep-ph/0501166] [INSPIRE].

    ADS  Google Scholar 

  71. C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Dipartimento di Fisica “E. Amaldi”, Università di Roma Tre, INFN Sezione di Roma Tre, I-00146, Rome, Italy

    Guido Altarelli

  2. CERN, Department of Physics, Theory Division, CH-1211, Geneva 23, Switzerland

    Guido Altarelli

  3. Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, INFN — Sezione di Padova, Via Marzolo 8, I-35131, Padua, Italy

    Ferruccio Feruglio

  4. Dipartimento di Fisica dell’Università di Ferrara, INFN — Sezione di Ferrara, Via Saragat 1, I-44100, Ferrara, Italy

    Isabella Masina

  5. CP3-Origins and DIAS, SDU University, Campusvej 55, DK-5230, Odense M, Denmark

    Isabella Masina

  6. Physik-Department, Technische Universität München, James-Franck-Strasse, D-85748, Garching, Germany

    Luca Merlo

  7. TUM Institute for Advanced Study, Technische Universität München, Lichtenbergstrasse 2a, D-85748, Garching, Germany

    Luca Merlo

Authors
  1. Guido Altarelli
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ferruccio Feruglio
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Isabella Masina
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Luca Merlo
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Isabella Masina.

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 2.0 International License ( https://creativecommons.org/licenses/by/2.0 ), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Reprints and permissions

About this article

Cite this article

Altarelli, G., Feruglio, F., Masina, I. et al. Repressing anarchy in neutrino mass textures. J. High Energ. Phys. 2012, 139 (2012). https://doi.org/10.1007/JHEP11(2012)139

Download citation

  • Received: 06 July 2012

  • Revised: 14 September 2012

  • Accepted: 05 November 2012

  • Published: 23 November 2012

  • DOI: https://doi.org/10.1007/JHEP11(2012)139

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Neutrino Physics
  • Beyond Standard Model
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature