A fast track towards the ‘Higgs’ spin and parity

Abstract

The LHC experiments ATLAS and CMS have discovered a new boson that resembles the long-sought Higgs boson: it cannot have spin one, and has couplings to other particles that increase with their masses, but the spin and parity remain to be determined. We show here that the ‘Higgs’ + gauge boson invariant-mass distribution in ‘Higgs’-strahlung events at the Tevatron or the LHC would be very different under the J P =0+ ,0 and 2+ hypotheses. Ouranalysisisbasedonsimulationsoftheexperimental event selections and cuts using PYTHIA and Delphes, and incorporates statistical samples of ‘toy’ experiments. The observation of ‘Higgs’-strahlung at the Tevatron and the expected peaking of backgrounds at low invariant masses suggest that this process could provide a fast-track indicator of the ‘Higgs’ spin and parity.

References

  1. [1]

    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

  3. [3]

    CDF, D0 collaboration, T. Aaltonen et al., Evidence for a particle produced in association with weak bosons and decaying to a bottom-antibottom quark pair in Higgs boson searches at the Tevatron, Phys. Rev. Lett. 109 (2012) 071804 [arXiv:1207.6436] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    J. Ellis and T. You, Global analysis of the Higgs candidate with mass ~ 125 GeV, JHEP 09 (2012) 123 [arXiv:1207.1693] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    S. Choi, D.J. Miller, M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett. B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].

    ADS  Google Scholar 

  6. [6]

    K. Odagiri, On azimuthal spin correlations in Higgs plus jet events at LHC, JHEP 03 (2003) 009 [hep-ph/0212215] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    C. Buszello, I. Fleck, P. Marquard and J. van der Bij, Prospective analysis of spin- and CP-sensitive variables in \( H\to ZZ\to l_1^{+}l_1^{-}l_2^{+}l_2^{-} \) at the LHC, Eur. Phys. J. C 32 (2004) 209 [hep-ph/0212396] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    C. Buszello and P. Marquard, Determination of spin and CP of the Higgs boson from WBF, hep-ph/0603209 [INSPIRE].

  10. [10]

    A. Bredenstein, A. Denner, S. Dittmaier and M. Weber, Precise predictions for the Higgs-boson decay H → W W/ZZ → 4 leptons, Phys. Rev. D 74 (2006) 013004 [hep-ph/0604011] [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    P. Bhupal Dev, A. Djouadi, R. Godbole, M. Muhlleitner and S. Rindani, Determining the CP properties of the Higgs boson, Phys. Rev. Lett. 100 (2008) 051801 [arXiv:0707.2878] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    R.M. Godbole, D.J. Miller, and M.M. Muhlleitner, Aspects of CP-violation in the H ZZ coupling at the LHC, JHEP 12 (2007) 031 [arXiv:0708.0458] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    K. Hagiwara, Q. Li and K. Mawatari, Jet angular correlation in vector-boson fusion processes at hadron colliders, JHEP 07 (2009) 101 [arXiv:0905.4314] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    Y. Gao et al., Spin determination of single-produced resonances at hadron colliders, Phys. Rev. D 81 (2010) 075022 [arXiv:1001.3396] [INSPIRE].

    ADS  Google Scholar 

  15. [15]

    A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev. D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    C. Englert, C. Hackstein and M. Spannowsky, Measuring spin and CP from semi-hadronic ZZ decays using jet substructure, Phys. Rev. D 82 (2010) 114024 [arXiv:1010.0676] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    U. De Sanctis, M. Fabbrichesi and A. Tonero, Telling the spin of theHiggs bosonat the LHC, Phys. Rev. D 84 (2011) 015013 [arXiv:1103.1973] [INSPIRE].

    ADS  Google Scholar 

  18. [18]

    V. Barger and P. Huang, Higgs boson finder and mass estimator: The Higgs boson to WW to leptons decay channel at the LHC, Phys. Rev. D 84 (2011) 093001 [arXiv:1107.4131] [INSPIRE].

    ADS  Google Scholar 

  19. [19]

    J. Ellis and D.S. Hwang, Does theHiggshave Spin Zero?, JHEP 09 (2012) 071 [arXiv:1202.6660] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    S. Bolognesi et al., On the spin and parity of a single-produced resonance at the LHC, arXiv:1208.4018 [INSPIRE].

  21. [21]

    R. Boughezal, T.J. LeCompte and F. Petriello, Single-variable asymmetries for measuring theHiggsboson spin and CP properties, arXiv:1208.4311 [INSPIRE].

  22. [22]

    D. Stolarski and R. Vega-Morales, Directly measuring the tensor structure of the scalar coupling to gauge bosons, arXiv:1208.4840 [INSPIRE].

  23. [23]

    D.J. Miller, S. Choi, B. Eberle, M. Muhlleitner and P. Zerwas, Measuring the spin of the Higgs boson, Phys. Lett. B 505 (2001) 149 [hep-ph/0102023] [INSPIRE].

    ADS  Google Scholar 

  24. [24]

    K. Hagiwara, J. Kanzaki, Q. Li and K. Mawatari, HELAS and MadGraph/MadEvent with spin-2 particles, Eur. Phys. J. C 56 (2008) 435 [arXiv:0805.2554] [INSPIRE].

    ADS  Article  Google Scholar 

  25. [25]

    J. Alwall, M. Herquet, F. Maltoni, O. Mattelaer and T. Stelzer, MadGraph 5: Going Beyond, JHEP 06 (2011) 128 [arXiv:1106.0522] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 Physics and Manual, JHEP 05 (2006)026 [hep-ph/0603175] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    S. Ovyn, X. Rouby and V. Lemaitre, DELPHES, a framework for fast simulation of a generic collider experiment, arXiv:0903.2225 [INSPIRE].

  28. [28]

    N.D. Christensen and C. Duhr, FeynRulesFeynman rules made easy, Comput. Phys. Commun. 180 (2009) 1614 [arXiv:0806.4194] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    C. Degrande et al., UFOThe Universal FeynRules Output, Comput. Phys. Commun. 183 (2012)1201 [arXiv:1108.2040] [INSPIRE].

    ADS  Article  Google Scholar 

  30. [30]

    R. Fok, C. Guimaraes, R. Lewis and V. Sanz, It is a Graviton! or maybe not, arXiv:1203.2917 [INSPIRE].

  31. [31]

    D0 collaboration, V.M. Abazov et al., Search for the standard model Higgs boson in \( ZH\to {\ell^{+}}{\ell^{-}}b\bar{b} \) production with the D0 detector in 9.7fb 1 of \( p\bar{p} \) collisions at \( \sqrt{s}=1.96\;TeV \), Phys. Rev. Lett. 109 (2012) 121803 [arXiv:1207.5819] [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    CDF collaboration, T. Aaltonen et al., Search for the standard model Higgs boson decaying to a bb pair in events with two oppositely-charged leptons using the full CDF data set, Phys. Rev. Lett. 109 (2012) 111803 [arXiv:1207.1704] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    CDF collaboration, T. Aaltonen et al., Search for the standard model Higgs boson decaying to a bb pair in events with one charged lepton and large missing transverse energy using the full CDF data set, Phys. Rev. Lett. 109 (2012) 111804 [arXiv:1207.1703] [INSPIRE].

    ADS  Article  Google Scholar 

  34. [34]

    CDF collaboration, T. Aaltonen et al., Search for the standard model Higgs boson decaying to a \( b\bar{b} \) pair in events with no charged leptons and large missing transverse energy using the full CDF data set, Phys. Rev. Lett. 109 (2012) 111805 [arXiv:1207.1711] [INSPIRE].

    ADS  Article  Google Scholar 

  35. [35]

    D0 collaboration, V.M. Abazov et al., Search for the standard model Higgs boson in the \( ZH\to \nu \bar{\nu}b\bar{b} \) channel in 9.5fb −1 of \( p\bar{p} \) collisions at \( \sqrt{s}=1.96\;TeV \),Phys. Lett. B 716(2012) 285 [arXiv:1207.5689] [INSPIRE].

    ADS  Google Scholar 

  36. [36]

    ATLAS collaboration, G. Aad et al., Search for the Standard Model Higgs boson produced in association with a vector boson and decaying to a b-quark pair with the ATLAS detector, arXiv:1207.0210 [INSPIRE].

  37. [37]

    CMS collaboration, S. Chatrchyan et al., Search for the standard model Higgs boson produced in association with W or Z bosons, and decaying to bottom quarks for ICHEP 2012, http://cdsweb.cern.ch/record/1460692/files/HIG-12-019-pas.pdf.

  38. [38]

    R. Cousins, J. Mumford, J. Tucker and V. Valuev, Spin discrimination of new heavy resonances at the LHC, JHEP 11 (2005) 046 [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Verónica Sanz.

Additional information

ArXiv ePrint: 1208.6002

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Ellis, J., Hwang, D.S., Sanz, V. et al. A fast track towards the ‘Higgs’ spin and parity. J. High Energ. Phys. 2012, 134 (2012). https://doi.org/10.1007/JHEP11(2012)134

Download citation

Keywords

  • Higgs Physics
  • Beyond Standard Model