Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM

Abstract

We present a phenomenological study of a CP-violating two-Higgs-doublet Model with type-II Yukawa couplings at the Large Hadron Collider (LHC). In the light of recent LHC data, we focus on the parameter space that survives the current and past experimental constraints as well as theoretical bounds on the model. Once the phenomeno-logical scenario is set, we analyse the scope of the LHC in exploring this model through the discovery of a charged Higgs boson produced in association with a W boson, with the former decaying into the lightest neutral Higgs and a second W state, altogether yielding a \( b\bar{b}{W^{+}}{W^{-}} \) signature, of which we exploit the W + W semileptonic decays.

References

  1. [1]

    ATLAS collaboration, G. Aad et al., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    CMS collaboration, S. Chatrchyan et al., Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    Tevatron New Physics Higgs Working Group, CDF and D0 collaborations, Updated combination of CDF and D0 searches for Standard Model Higgs boson production with up to 10.0 fb−1 of data, arXiv:1207.0449 [INSPIRE].

  4. [4]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: the Higgs boson in the Standard Model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, The Higgs hunters guide, Front. Phys. 80 (2000) 1 [INSPIRE].

    Google Scholar 

  6. [6]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [INSPIRE].

    ADS  Article  Google Scholar 

  7. [7]

    A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Implications of a 125 GeV Higgs for supersymmetric models, Phys. Lett. B 708 (2012) 162 [arXiv:1112.3028] [INSPIRE].

    ADS  Google Scholar 

  8. [8]

    A. Arbey, M. Battaglia and F. Mahmoudi, Constraints on the MSSM from the Higgs sector: a pMSSM study of Higgs searches, \( B_s^0\to {\mu^{+}}{\mu^{-}} \) and dark matter direct detection, Eur. Phys. J. C 72 (2012) 1906 [arXiv:1112.3032] [INSPIRE].

    ADS  Article  Google Scholar 

  9. [9]

    S. Heinemeyer, O. Stal and G. Weiglein, Interpreting the LHC Higgs search results in the MSSM, Phys. Lett. B 710 (2012) 201 [arXiv:1112.3026] [INSPIRE].

    ADS  Google Scholar 

  10. [10]

    L.J. Hall, D. Pinner and J.T. Ruderman, A natural SUSY Higgs near 126 GeV, JHEP 04 (2012) 131 [arXiv:1112.2703] [INSPIRE].

    ADS  Article  Google Scholar 

  11. [11]

    P. Draper, P. Meade, M. Reece and D. Shih, Implications of a 125 GeV Higgs for the MSSM and low-scale SUSY breaking, Phys. Rev. D 85 (2012) 095007 [arXiv:1112.3068] [INSPIRE].

    ADS  Google Scholar 

  12. [12]

    M. Carena, S. Gori, N.R. Shah and C.E. Wagner, A 125 GeV SM-like Higgs in the MSSM and the γγ rate, JHEP 03 (2012) 014 [arXiv:1112.3336] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    J. Cao, Z. Heng, D. Li and J.M. Yang, Current experimental constraints on the lightest Higgs boson mass in the constrained MSSM, Phys. Lett. B 710 (2012) 665 [arXiv:1112.4391] [INSPIRE].

    ADS  Google Scholar 

  14. [14]

    J.-J. Cao, Z.-X. Heng, J.M. Yang, Y.-M. Zhang and J.-Y. Zhu, A SM-like Higgs near 125 GeV in low energy SUSY: a comparative study for MSSM and NMSSM, JHEP 03 (2012) 086 [arXiv:1202.5821] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85 (2012) 115018 [arXiv:1203.3207] [INSPIRE].

    ADS  Google Scholar 

  16. [16]

    D. Ghosh, M. Guchait, S. Raychaudhuri and D. Sengupta, How constrained is the cMSSM?, Phys. Rev. D 86 (2012) 055007 [arXiv:1205.2283] [INSPIRE].

    ADS  Google Scholar 

  17. [17]

    F. Brummer, S. Kraml and S. Kulkarni, Anatomy of maximal stop mixing in the MSSM, JHEP 08 (2012) 089 [arXiv:1204.5977] [INSPIRE].

    ADS  Article  Google Scholar 

  18. [18]

    M. Carena, S. Gori, N.R. Shah, C.E. Wagner and L.-T. Wang, Light stau phenomenology and the Higgs γγ rate, JHEP 07 (2012) 175 [arXiv:1205.5842] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M.W. Cahill-Rowley, J.L. Hewett, A. Ismail and T.G. Rizzo, The Higgs sector and fine-tuning in the pMSSM, arXiv:1206.5800 [INSPIRE].

  20. [20]

    R. Benbrik et al., Confronting the MSSM and the NMSSM with the discovery of a signal in the two photon channel at the LHC, arXiv:1207.1096 [INSPIRE].

  21. [21]

    A. Arbey, M. Battaglia, A. Djouadi and F. Mahmoudi, The Higgs sector of the phenomenological MSSM in the light of the Higgs boson discovery, JHEP 09 (2012) 107 [arXiv:1207.1348] [INSPIRE].

    ADS  Article  Google Scholar 

  22. [22]

    S. Akula, P. Nath and G. Peim, Implications of the Higgs boson discovery for mSUGRA, Phys. Lett. B 717 (2012) 188 [arXiv:1207.1839] [INSPIRE].

    ADS  Google Scholar 

  23. [23]

    M.S. Carena, J.R. Ellis, A. Pilaftsis and C. Wagner, Renormalization group improved effective potential for the MSSM Higgs sector with explicit CP-violation, Nucl. Phys. B 586 (2000) 92 [hep-ph/0003180] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

    ADS  Google Scholar 

  25. [25]

    G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC observing the pseudo-scalar state of a two-Higgs doublet model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

    ADS  Google Scholar 

  26. [26]

    E. Cervero and J.-M. Gerard, Minimal violation of flavour and custodial symmetries in a vectophobic two-Higgs-doublet-model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973] [INSPIRE].

    ADS  Google Scholar 

  27. [27]

    A. Barroso, P. Ferreira, R. Santos and J.P. Silva, Probing the scalar-pseudoscalar mixing in the 125 GeV Higgs particle with current data, Phys. Rev. D 86 (2012) 015022 [arXiv:1205.4247] [INSPIRE].

    ADS  Google Scholar 

  28. [28]

    A. Arhrib, R. Benbrik and C.-H. Chen, H → γγ in the complex two Higgs doublet model, arXiv:1205.5536 [INSPIRE].

  29. [29]

    S. Moretti, Pair production of charged Higgs scalars from electroweak gauge boson fusion, J. Phys. G 28 (2002) 2567 [hep-ph/0102116] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  30. [30]

    S. Moretti, Improving the discovery potential of charged Higgs bosons at the Tevatron and Large Hadron Collider, Pramana 60 (2003) 369 [hep-ph/0205104] [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    S.L. Glashow and S. Weinberg, Natural conservation laws for neutral currents, Phys. Rev. D 15 (1977) 1958 [INSPIRE].

    ADS  Google Scholar 

  32. [32]

    W. Khater and P. Osland, CP violation in top quark production at the LHC and two Higgs doublet models, Nucl. Phys. B 661 (2003) 209 [hep-ph/0302004] [INSPIRE].

    ADS  Article  Google Scholar 

  33. [33]

    E. Accomando et al., Workshop on CP studies and non-standard Higgs physics, hep-ph/0608079 [INSPIRE].

  34. [34]

    A.W. El Kaffas, P. Osland and O.M. Ogreid, CP violation, stability and unitarity of the two Higgs doublet model, Nonlin. Phenom. Complex Syst. 10 (2007) 347 [hep-ph/0702097] [INSPIRE].

    Google Scholar 

  35. [35]

    A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45 [hep-ph/0605142] [INSPIRE].

    ADS  Article  Google Scholar 

  36. [36]

    A. Riotto and M. Trodden, Recent progress in baryogenesis, Ann. Rev. Nucl. Part. Sci. 49 (1999) 35 [hep-ph/9901362] [INSPIRE].

    ADS  Article  Google Scholar 

  37. [37]

    N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys. Rev. D 18 (1978) 2574 [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    S. Nie and M. Sher, Vacuum stability bounds in the two Higgs doublet model, Phys. Lett. B 449 (1999) 89 [hep-ph/9811234] [INSPIRE].

    ADS  Google Scholar 

  39. [39]

    S. Kanemura, T. Kasai and Y. Okada, Mass bounds of the lightest CP even Higgs boson in the two Higgs doublet model, Phys. Lett. B 471 (1999) 182 [hep-ph/9903289] [INSPIRE].

    ADS  Google Scholar 

  40. [40]

    P. Ferreira, R. Santos and A. Barroso, Stability of the tree-level vacuum in two Higgs doublet models against charge or CP spontaneous violation, Phys. Lett. B 603 (2004) 219 [Erratum ibid. B 629 (2005) 114] [hep-ph/0406231] [INSPIRE].

    ADS  Google Scholar 

  41. [41]

    A. Barroso, P. Ferreira and R. Santos, Charge and CP symmetry breaking in two Higgs doublet models, Phys. Lett. B 632 (2006) 684 [hep-ph/0507224] [INSPIRE].

    ADS  Google Scholar 

  42. [42]

    A. Barroso, P. Ferreira and R. Santos, Neutral minima in two-Higgs doublet models, Phys. Lett. B 652 (2007) 181 [hep-ph/0702098] [INSPIRE].

    ADS  Google Scholar 

  43. [43]

    B. Grzadkowski, O. Ogreid, P. Osland, A. Pukhov and M. Purmohammadi, Exploring the CP-violating inert-doublet model, JHEP 06 (2011) 003 [arXiv:1012.4680] [INSPIRE].

    ADS  Article  Google Scholar 

  44. [44]

    S. Kanemura, T. Kubota and E. Takasugi, Lee-Quigg-Thacker bounds for Higgs boson masses in a two doublet model, Phys. Lett. B 313 (1993) 155 [hep-ph/9303263] [INSPIRE].

    ADS  Google Scholar 

  45. [45]

    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [INSPIRE].

    ADS  Google Scholar 

  46. [46]

    A. Arhrib, Unitarity constraints on scalar parameters of the standard and two Higgs doublets model, hep-ph/0012353 [INSPIRE].

  47. [47]

    I. Ginzburg and I. Ivanov, Tree level unitarity constraints in the 2HDM with CP-violation, hep-ph/0312374 [INSPIRE].

  48. [48]

    I. Ginzburg and I. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    M. Aoki et al., Light charged Higgs bosons at the LHC in 2HDMs, Phys. Rev. D 84 (2011) 055028 [arXiv:1104.3178] [INSPIRE].

    ADS  Google Scholar 

  50. [50]

    F. Mahmoudi, SuperIso: A program for calculating the isospin asymmetry of B → K γ in the MSSM, Comput. Phys. Commun. 178 (2008) 745 [arXiv:0710.2067] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  51. [51]

    F. Mahmoudi, SuperIso v2.3: A program for calculating flavor physics observables in supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

    ADS  Article  Google Scholar 

  52. [52]

    M. Misiak et al., Estimate of \( B\left( {\bar{B}\to {X_{\mathrm{s}}}\gamma } \right) \) at \( O\left( {\alpha_s^2} \right) \), Phys. Rev. Lett. 98 (2007) 022002 [hep-ph/0609232] [INSPIRE].

    ADS  Article  Google Scholar 

  53. [53]

    M. Misiak and M. Steinhauser, NNLO QCD corrections to the \( \bar{B}\to {X_{\mathrm{s}}}\gamma \) matrix elements using interpolation in m c, Nucl. Phys. B 764 (2007) 62 [hep-ph/0609241] [INSPIRE].

    ADS  Article  Google Scholar 

  54. [54]

    K.G. Chetyrkin, M. Misiak and M. Münz, Weak radiative B meson decay beyond leading logarithms, Phys. Lett. B 400 (1997) 206 [Erratum ibid. B 425 (1998) 414] [hep-ph/9612313] [INSPIRE].

    ADS  Google Scholar 

  55. [55]

    A.J. Buras, A. Kwiatkowski and N. Pott, On the scale uncertainties in the BX s γ decay, Phys. Lett. B 414 (1997) 157 [Erratum ibid. B 434 (1998) 459] [hep-ph/9707482] [INSPIRE].

    ADS  Google Scholar 

  56. [56]

    C. Bobeth, M. Misiak and J. Urban, Photonic penguins at two loops and m t dependence of \( BR\left[ {B\to {X_{\mathrm{s}}}{\ell^{+}}{\ell^{-}}} \right] \), Nucl. Phys. B 574 (2000) 291 [hep-ph/9910220] [INSPIRE].

    ADS  Article  Google Scholar 

  57. [57]

    P. Gambino and M. Misiak, Quark mass effects in \( \bar{B}\to {X_{\mathrm{s}}}\gamma \), Nucl. Phys. B 611 (2001) 338 [hep-ph/0104034] [INSPIRE].

    ADS  Article  Google Scholar 

  58. [58]

    A.J. Buras, A. Czarnecki, M. Misiak and J. Urban, Completing the NLO QCD calculation of \( \bar{B}\to {X_s}\gamma \), Nucl. Phys. B 631 (2002) 219 [hep-ph/0203135] [INSPIRE].

    ADS  Article  Google Scholar 

  59. [59]

    F. Borzumati and C. Greub, 2HDMs predictions for \( \bar{B}\to {X_{\mathrm{s}}}\gamma \) in NLO QCD, Phys. Rev. D 58 (1998) 074004 [hep-ph/9802391] [INSPIRE].

    ADS  Google Scholar 

  60. [60]

    M. Misiak and M. Steinhauser, Three loop matching of the dipole operators for bsγ and bsg, Nucl. Phys. B 683 (2004) 277 [hep-ph/0401041] [INSPIRE].

    ADS  Article  Google Scholar 

  61. [61]

    K. Melnikov and A. Mitov, The photon energy spectrum in \( B\to {X_{\mathrm{s}}}+\gamma \) in perturbative QCD through \( O\left( {\alpha_s^2} \right) \), Phys. Lett. B 620 (2005) 69 [hep-ph/0505097] [INSPIRE].

    ADS  Google Scholar 

  62. [62]

    M. Czakon, U. Haisch and M. Misiak, Four-loop anomalous dimensions for radiative flavour-changing decays, JHEP 03 (2007) 008 [hep-ph/0612329] [INSPIRE].

    ADS  Article  Google Scholar 

  63. [63]

    C.W. Bauer, Corrections to moments of the photon spectrum in the inclusive decay BX s γ, Phys. Rev. D 57 (1998) 5611 [Erratum ibid. D 60 (1999) 099907] [hep-ph/9710513] [INSPIRE].

    ADS  Google Scholar 

  64. [64]

    M. Neubert, Renormalization-group improved calculation of the BX s γ branching ratio, Eur. Phys. J. C 40 (2005) 165 [hep-ph/0408179] [INSPIRE].

    ADS  Article  Google Scholar 

  65. [65]

    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

    ADS  Google Scholar 

  66. [66]

    Heavy Flavor Averaging Group collaboration, D. Asner et al., Averages of b-hadron, c-hadron and τ -lepton properties, arXiv:1010.1589 [INSPIRE].

  67. [67]

    M. Ciuchini, G. Degrassi, P. Gambino and G. Giudice, Next-to-leading QCD corrections to BX s γ: Standard Model and two Higgs doublet model, Nucl. Phys. B 527 (1998) 21 [hep-ph/9710335] [INSPIRE].

    ADS  Article  Google Scholar 

  68. [68]

    A. Wahab El Kaffas, P. Osland and O.M. Ogreid, Constraining the two-Higgs-doublet-model parameter space, Phys. Rev. D 76 (2007) 095001 [arXiv:0706.2997] [INSPIRE].

    ADS  Google Scholar 

  69. [69]

    T. Hermann, M. Misiak and M. Steinhauser, \( \bar{B}\to {X_{\mathrm{s}}}\gamma \) in the two Higgs doublet model up to next-to-next-to-leading order in QCD, arXiv:1208.2788 [INSPIRE].

  70. [70]

    W.-S. Hou, Enhanced charged Higgs boson effects in \( B\to \tau \bar{\nu} \) , \( \mu \bar{\nu} \) and \( b\to \tau \bar{\nu}X \), Phys. Rev. D 48 (1993) 2342 [INSPIRE].

    ADS  Google Scholar 

  71. [71]

    J. Laiho, E. Lunghi and R.S. Van de Water, Lattice QCD inputs to the CKM unitarity triangle analysis, Phys. Rev. D 81 (2010) 034503 [arXiv:0910.2928] [INSPIRE].

    ADS  Google Scholar 

  72. [72]

    CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].

    ADS  Article  Google Scholar 

  73. [73]

    BABAR collaboration, J. Lees et al., Evidence of B → τ ν decays with hadronic B tags, arXiv:1207.0698 [INSPIRE].

  74. [74]

    Y. Grossman and Z. Ligeti, The inclusive \( \bar{B}\to \tau \bar{\nu}X \) decay in two Higgs doublet models, Phys. Lett. B 332 (1994) 373 [hep-ph/9403376] [INSPIRE].

    ADS  Google Scholar 

  75. [75]

    Y. Grossman, H.E. Haber and Y. Nir, QCD corrections to charged Higgs mediated bcτ ν decay, Phys. Lett. B 357 (1995) 630 [hep-ph/9507213] [INSPIRE].

    ADS  Google Scholar 

  76. [76]

    A. Akeroyd and S. Recksiegel, The effect of H ± on B ±τ ± ν τ and B ±μ ± ν μ , J. Phys. G 29 (2003) 2311 [hep-ph/0306037] [INSPIRE].

    ADS  Google Scholar 

  77. [77]

    A. Akeroyd and C.H. Chen, Effect of H ± on B ±τ ± ν τ and D sμ ± ν μ , τ ± ν τ , Phys. Rev. D 75 (2007) 075004 [hep-ph/0701078] [INSPIRE].

    ADS  Google Scholar 

  78. [78]

    D. Eriksson, F. Mahmoudi and O. Stal, Charged Higgs bosons in minimal supersymmetry: Updated constraints and experimental prospects, JHEP 11 (2008) 035 [arXiv:0808.3551] [INSPIRE].

    ADS  Article  Google Scholar 

  79. [79]

    BaBar collaboration, J. Lees et al., Evidence for an excess of \( \bar{B}\to {D^{{\left( * \right)}}}{\tau^{-}}{{\bar{\nu}}_{\tau }} \) decays, Phys. Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

    ADS  Article  Google Scholar 

  80. [80]

    B. Grzadkowski and W.-S. Hou, Solutions to the B meson semileptonic branching ratio puzzle within two Higgs doublet models, Phys. Lett. B 272 (1991) 383 [INSPIRE].

    ADS  Google Scholar 

  81. [81]

    U. Nierste, S. Trine and S. Westhoff, Charged-Higgs effects in a new B → Dτ ν differential decay distribution, Phys. Rev. D 78 (2008) 015006 [arXiv:0801.4938] [INSPIRE].

    ADS  Google Scholar 

  82. [82]

    J.F. Kamenik and F. Mescia, B → Dτ ν branching ratios: opportunity for lattice QCD and hadron colliders, Phys. Rev. D 78 (2008) 014003 [arXiv:0802.3790] [INSPIRE].

    ADS  Google Scholar 

  83. [83]

    A. Akeroyd and F. Mahmoudi, Constraints on charged Higgs bosons from \( D_s^{\pm}\to {\mu^{\pm }}\nu \) and \( D_s^{\pm}\to {\tau^{\pm }}\nu \), JHEP 04 (2009) 121 [arXiv:0902.2393] [INSPIRE].

    ADS  Article  Google Scholar 

  84. [84]

    C. Davies et al., Update: Precision D s decay constant from full lattice QCD using very fine lattices, Phys. Rev. D 82 (2010) 114504 [arXiv:1008.4018] [INSPIRE].

    ADS  Google Scholar 

  85. [85]

    H.E. Logan and U. Nierste, B s,d + in a two Higgs doublet model, Nucl. Phys. B 586 (2000) 39 [hep-ph/0004139] [INSPIRE].

    ADS  Article  Google Scholar 

  86. [86]

    C. Bobeth, T. Ewerth, F. Krüger and J. Urban, Analysis of neutral Higgs boson contributions to the decays \( {{\bar{B}}_{\mathrm{s}}}\to {\ell^{+}}{\ell^{-}} \) and \( \bar{B}\to K{\ell^{+}}{\ell^{-}} \), Phys. Rev. D 64 (2001) 074014 [hep-ph/0104284] [INSPIRE].

    ADS  Google Scholar 

  87. [87]

    LHCb collaboration, R. Aaij et al., Strong constraints on the rare decays B sμ + μ and B 0μ + μ , Phys. Rev. Lett. 108 (2012) 231801 [arXiv:1203.4493] [INSPIRE].

    ADS  Article  Google Scholar 

  88. [88]

    ATLAS, CMS and LHCb collaborations, Search for the rare decays B s and B 0 to dimuons at the LHC with the ATLAS, CMS and LHCb experiments, CMS-PAS-BPH-12-009, CERN, Geneva Switzerland (2012).

  89. [89]

    F. Mahmoudi, S. Neshatpour and J. Orloff, Supersymmetric constraints from B s → μ + μ and B → K μ + μ observables, JHEP 08 (2012) 092 [arXiv:1205.1845] [INSPIRE].

    ADS  Article  Google Scholar 

  90. [90]

    L. Abbott, P. Sikivie and M.B. Wise, Constraints on charged Higgs couplings, Phys. Rev. D 21 (1980) 1393 [INSPIRE].

    ADS  Google Scholar 

  91. [91]

    G.G. Athanasiu, P.J. Franzini and F.J. Gilman, Restrictions on two Higgs models from heavy quark systems, Phys. Rev. D 32 (1985) 3010 [INSPIRE].

    ADS  Google Scholar 

  92. [92]

    S.L. Glashow and E.E. Jenkins, A light top quark after all?, Phys. Lett. B 196 (1987) 233 [INSPIRE].

    ADS  Google Scholar 

  93. [93]

    C. Geng and J.N. Ng, Charged Higgs effect in \( B_d^0-\bar{B}_d^0 \) mixing, \( K\to \pi \nu \bar{\nu} \) decay and rare decays of B mesons, Phys. Rev. D 38 (1988) 2857 [Erratum ibid. D 41 (1990) 1715] [INSPIRE].

    ADS  Google Scholar 

  94. [94]

    T. Inami and C. Lim, Effects of superheavy quarks and leptons in low-energy weak processes \( {K_L}\to \mu \bar{\mu} \) , \( {K^{+}}\to {\pi^{+}}\nu \bar{\nu} \) and \( {K^0}\leftrightarrow {{\bar{K}}^0} \), Prog. Theor. Phys. 65 (1981) 297 [Erratum ibid. 65 (1981)1772] [INSPIRE].

    ADS  Article  Google Scholar 

  95. [95]

    J. Urban, F. Krauss, U. Jentschura and G. Soff, Next-to-leading order QCD corrections for the \( {B^0}-{{\bar{B}}^0} \) mixing with an extended Higgs sector, Nucl. Phys. B 523 (1998) 40 [hep-ph/9710245] [INSPIRE].

    ADS  Article  Google Scholar 

  96. [96]

    A. Denner, R. Guth, W. Hollik and J.H. Kuhn, The Z width in the two Higgs doublet model, Z. Phys. C 51 (1991) 695 [INSPIRE].

    ADS  Google Scholar 

  97. [97]

    ATLAS collaboration, G. Aad et al., Combined search for the Standard Model Higgs boson using up to 4.9 fb−1 of pp collision data at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Lett. B 710 (2012) 49 [arXiv:1202.1408] [INSPIRE].

    ADS  Google Scholar 

  98. [98]

    CMS collaboration, S. Chatrchyan et al., Combined results of searches for the standard model Higgs boson in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 710 (2012) 26 [arXiv:1202.1488] [INSPIRE].

    ADS  Google Scholar 

  99. [99]

    P. Osland, P. Pandita and L. Selbuz, Trilinear Higgs couplings in the two Higgs doublet model with CP-violation, Phys. Rev. D 78 (2008) 015003 [arXiv:0802.0060] [INSPIRE].

    ADS  Google Scholar 

  100. [100]

    Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J. Phys. G 37 (2010) 075021 [INSPIRE].

    ADS  Google Scholar 

  101. [101]

    W. Grimus, L. Lavoura, O. Ogreid and P. Osland, A Precision constraint on multi-Higgs-doublet models, J. Phys. G 35 (2008) 075001 [arXiv:0711.4022] [INSPIRE].

    ADS  Google Scholar 

  102. [102]

    W. Grimus, L. Lavoura, O. Ogreid and P. Osland, The oblique parameters in multi-Higgs-doublet models, Nucl. Phys. B 801 (2008) 81 [arXiv:0802.4353] [INSPIRE].

    ADS  Article  Google Scholar 

  103. [103]

    B. Regan, E. Commins, C. Schmidt and D. DeMille, New limit on the electron electric dipole moment, Phys. Rev. Lett. 88 (2002) 071805 [INSPIRE].

    ADS  Article  Google Scholar 

  104. [104]

    A. Pilaftsis, Higgs mediated electric dipole moments in the MSSM: An application to baryogenesis and Higgs searches, Nucl. Phys. B 644 (2002) 263 [hep-ph/0207277] [INSPIRE].

    ADS  Article  Google Scholar 

  105. [105]

    S.M. Barr and A. Zee, Electric dipole moment of the electron and of the neutron, Phys. Rev. Lett. 65 (1990) 21 [Erratum ibid. 65 (1990) 2920] [INSPIRE].

    ADS  Article  Google Scholar 

  106. [106]

    K. Cheung and O.C. Kong, Can the two Higgs doublet model survive the constraint from the muon anomalous magnetic moment as suggested?, Phys. Rev. D 68 (2003) 053003 [hep-ph/0302111] [INSPIRE].

    ADS  Google Scholar 

  107. [107]

    D. Chang, W.-F. Chang, C.-H. Chou and W.-Y. Keung, Large two loop contributions to g-2 from a generic pseudoscalar boson, Phys. Rev. D 63 (2001) 091301 [hep-ph/0009292] [INSPIRE].

    ADS  Google Scholar 

  108. [108]

    J.-M. Gerard and M. Herquet, A twisted custodial symmetry in the two-Higgs-doublet model, Phys. Rev. Lett. 98 (2007) 251802 [hep-ph/0703051] [INSPIRE].

    ADS  Article  Google Scholar 

  109. [109]

    R. Dermisek and J.F. Gunion, New constraints on a light CP-odd Higgs boson and related NMSSM ideal Higgs scenarios, Phys. Rev. D 81 (2010) 075003 [arXiv:1002.1971] [INSPIRE].

    ADS  Google Scholar 

  110. [110]

    B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, arXiv:1208.2692 [INSPIRE].

  111. [111]

    J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].

    ADS  Google Scholar 

  112. [112]

    A. Semenov, LanHEP: a package for automatic generation of Feynman rules in gauge models, hep-ph/9608488 [INSPIRE].

  113. [113]

    W. Mader, J.-H. Park, G.M. Pruna, D. Stöckinger and A. Straessner, LHC explores what LEP hinted at: CP-violating type-I 2HDM, JHEP 09 (2012) 125 [arXiv:1205.2692] [INSPIRE].

    ADS  Article  Google Scholar 

  114. [114]

    A. Pukhov, CalcHEP 2.3: MSSM, structure functions, event generation, batchs and generation of matrix elements for other packages, hep-ph/0412191 [INSPIRE].

  115. [115]

    A. Pukhov, A. Belyaev and N. Christensen, CalcHEPa package for calculation of Feynman diagrams and integration over multi-particle phase space webpage, http://theory.sinp.msu.ru/∼pukhov/calchep.html.

  116. [116]

    P.M. Nadolsky et al., Implications of CTEQ global analysis for collider observables, Phys. Rev. D 78 (2008) 013004 [arXiv:0802.0007] [INSPIRE].

    ADS  Google Scholar 

  117. [117]

    T. Hahn and M. Pérez-Victoria, Automatized one loop calculations in four-dimensions and D-dimensions, Comput. Phys. Commun. 118 (1999) 153 [hep-ph/9807565] [INSPIRE].

    ADS  Article  Google Scholar 

  118. [118]

    P. Posch, Enhancement of h → γγ in the two Higgs doublet model type I, Phys. Lett. B 696 (2011) 447 [arXiv:1001.1759] [INSPIRE].

    ADS  Google Scholar 

  119. [119]

    E. Asakawa, O. Brein and S. Kanemura, Enhancement of W ± H production at hadron colliders in the two Higgs doublet model, Phys. Rev. D 72 (2005) 055017 [hep-ph/0506249] [INSPIRE].

    ADS  Google Scholar 

  120. [120]

    T.N. Dao, W. Hollik and D.N. Le, W H ± production and CP asymmetry at the LHC, Phys. Rev. D 83 (2011) 075003 [arXiv:1011.4820] [INSPIRE].

    ADS  Google Scholar 

  121. [121]

    R. Enberg, R. Pasechnik and O. Stal, Enhancement of associated H ± W production in the NMSSM, Phys. Rev. D 85 (2012) 075016 [arXiv:1112.4699] [INSPIRE].

    ADS  Google Scholar 

  122. [122]

    S. Moretti, The W ± h decay channel as a probe of charged Higgs boson production at the Large Hadron Collider, Phys. Lett. B 481 (2000) 49 [hep-ph/0003178] [INSPIRE].

    ADS  Google Scholar 

  123. [123]

    S. Moretti and K. Odagiri, The phenomenology of W ± H production at the Large Hadron Collider, Phys. Rev. D 59 (1999) 055008 [hep-ph/9809244] [INSPIRE].

    ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to P. Osland.

Additional information

ArXiv ePrint: 1205.6569

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Cite this article

Basso, L., Lipniacka, A., Mahmoudi, F. et al. Probing the charged Higgs boson at the LHC in the CP-violating type-II 2HDM. J. High Energ. Phys. 2012, 11 (2012). https://doi.org/10.1007/JHEP11(2012)011

Download citation

Keywords

  • Higgs Physics
  • Beyond Standard Model