Skip to main content
Log in

The Yang-Mills gradient flow in finite volume

  • Published:
Journal of High Energy Physics Aims and scope Submit manuscript

Abstract

The Yang-Mills gradient flow is considered on the four dimensional torus T 4 for SU(N) gauge theory coupled to N f flavors of massless fermions in arbitrary representations. The small volume dynamics is dominated by the constant gauge fields. The expectation value of the field strength tensor squared TrF μν F μν (t) is calculated for positive flow time t by treating the non-zero gauge modes perturbatively and the zero modes exactly. The finite volume correction to the infinite volume result is found to contain both algebraic and exponential terms. The leading order result is then used to define a one parameter family of running coupling schemes in which the coupling runs with the linear size of the box. The new scheme is tested numerically in SU(3) gauge theory coupled to N f = 4 flavors of massless fundamental fermions. The calculations are performed at several lattice spacings with a controlled continuum extrapolation. The continuum result agrees with the perturbative prediction for small renormalized coupling as expected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Lüscher, Trivializing maps, the Wilson flow and the HMC algorithm, Commun. Math. Phys. 293 (2010) 899 [arXiv:0907.5491] [INSPIRE].

    Article  MATH  Google Scholar 

  2. R. Narayanan and H. Neuberger, Infinite N phase transitions in continuum Wilson loop operators, JHEP 03 (2006) 064 [hep-th/0601210] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  3. M. Lüscher, Properties and uses of the Wilson flow in lattice QCD, JHEP 08 (2010) 071 [arXiv:1006.4518] [INSPIRE].

    Article  Google Scholar 

  4. M. Lüscher, Topology, the Wilson flow and the HMC algorithm, PoS(LATTICE 2010)015 [arXiv:1009.5877] [INSPIRE].

  5. M. Lüscher and P. Weisz, Perturbative analysis of the gradient flow in non-Abelian gauge theories, JHEP 02 (2011) 051 [arXiv:1101.0963] [INSPIRE].

    Article  ADS  Google Scholar 

  6. R. Lohmayer and H. Neuberger, Continuous smearing of Wilson Loops, PoS(LATTICE 2011)249 [arXiv:1110.3522] [INSPIRE].

  7. S. Borsányi et al., High-precision scale setting in lattice QCD, JHEP 09 (2012) 010 [arXiv:1203.4469] [INSPIRE].

    Article  ADS  Google Scholar 

  8. M. Lüscher, P. Weisz and U. Wolff, A numerical method to compute the running coupling in asymptotically free theories, Nucl. Phys. B 359 (1991) 221 [INSPIRE].

    Article  ADS  Google Scholar 

  9. M. Lüscher, R. Narayanan, P. Weisz and U. Wolff, The Schrödinger functional: a renormalizable probe for non-Abelian gauge theories, Nucl. Phys. B 384 (1992) 168 [hep-lat/9207009] [INSPIRE].

    Article  ADS  Google Scholar 

  10. M. Lüscher, Some analytic results concerning the mass spectrum of Yang-Mills gauge theories on a torus, Nucl. Phys. B 219 (1983) 233 [INSPIRE].

    Article  ADS  Google Scholar 

  11. J. Koller and P. van Baal, A rigorous nonperturbative result for the glueball mass and electric flux energy in a finite volume, Nucl. Phys. B 273 (1986) 387 [INSPIRE].

    Article  ADS  Google Scholar 

  12. J. Koller and P. van Baal, A nonperturbative analysis in finite volume gauge theory, Nucl. Phys. B 302 (1988) 1 [INSPIRE].

    Article  ADS  Google Scholar 

  13. P. van Baal, The small volume expansion of gauge theories coupled to massless fermions, Nucl. Phys. B 307 (1988) 274 [Erratum ibid. B 312 (1989) 752] [INSPIRE].

    Article  ADS  Google Scholar 

  14. P. van Baal, Gauge theory in a finite volume, Acta Phys. Polon. B 20 (1989) 295 [INSPIRE].

    Google Scholar 

  15. C.P. Korthals Altes, Fluctuations of constant potentials in QCD and their contribution to finite size effects, lecture presented at Gift seminar, CPT-85/P-1806, Jaca Spain (1985) [INSPIRE].

  16. A. Coste, A. Gonzalez-Arroyo, J. Jurkiewicz and C. Korthals Altes, Zero momentum contribution to Wilson loops in periodic boxes, Nucl. Phys. B 262 (1985) 67 [INSPIRE].

    Article  ADS  Google Scholar 

  17. A. Coste, A. Gonzalez-Arroyo, C. Korthals Altes, B. Soderberg and A. Tarancon, Finite size effects and twisted boundary conditions, Nucl. Phys. B 287 (1987) 569 [INSPIRE].

    Article  ADS  Google Scholar 

  18. C. Korthals Altes, Pure QCD in small volumes and the low lying glueball spectrum, Nucl. Phys. Proc. Suppl. 10A (1989) 284 [INSPIRE].

    Article  ADS  Google Scholar 

  19. ALPHA collaboration, F. Tekin, R. Sommer and U. Wolff, The running coupling of QCD with four flavors, Nucl. Phys. B 840 (2010) 114 [arXiv:1006.0672] [INSPIRE].

    Article  ADS  Google Scholar 

  20. P. Perez-Rubio and S. Sint, Non-perturbative running of the coupling from four flavour lattice QCD with staggered quarks, PoS(LATTICE 2010)236 [arXiv:1011.6580] [INSPIRE].

  21. C. Morningstar and M.J. Peardon, Analytic smearing of SU(3) link variables in lattice QCD Phys. Rev. D 69 (2004) 054501 [hep-lat/0311018] [INSPIRE].

    ADS  Google Scholar 

  22. K. Symanzik, Continuum limit and improved action in lattice theories. 1. Principles and ϕ 4 theory, Nucl. Phys. B 226 (1983) 187 [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  23. M. Lüscher and P. Weisz, On-shell improved lattice gauge theories, Commun. Math. Phys. 97 (1985) 59 [Erratum ibid. 98 (1985) 433] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  24. S. Duane, A. Kennedy, B. Pendleton and D. Roweth, Hybrid Monte Carlo, Phys. Lett. B 195 (1987) 216 [INSPIRE].

    ADS  Google Scholar 

  25. J. Sexton and D. Weingarten, Hamiltonian evolution for the hybrid Monte Carlo algorithm, Nucl. Phys. B 380 (1992) 665 [INSPIRE].

    Article  ADS  Google Scholar 

  26. T. Takaishi and P. de Forcrand, Testing and tuning new symplectic integrators for hybrid Monte Carlo algorithm in lattice QCD, Phys. Rev. E 73 (2006) 036706 [hep-lat/0505020] [INSPIRE].

    ADS  Google Scholar 

  27. G.I. Egri et al., Lattice QCD as a video game, Comput. Phys. Commun. 177 (2007) 631 [hep-lat/0611022] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Nogradi.

Additional information

ArXiv ePrint: 1208.1051

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fodor, Z., Holland, K., Kuti, J. et al. The Yang-Mills gradient flow in finite volume. J. High Energ. Phys. 2012, 7 (2012). https://doi.org/10.1007/JHEP11(2012)007

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP11(2012)007

Keywords

Navigation