Skip to main content

Determining matrix elements and resonance widths from finite volume: the dangerous μ-terms

Abstract

The standard numerical approach to determining matrix elements of local operators and width of resonances uses the finite volume dependence of energy levels and matrix elements. Finite size corrections that decay exponentially in the volume are usually neglected or taken into account using perturbation expansion in effective field theory. Using two-dimensional sine-Gordon field theory as “toy model” it is shown that some exponential finite size effects could be much larger than previously thought, potentially spoiling the determination of matrix elements in frameworks such as lattice QCD. The particular class of finite size corrections considered here are μ-terms arising from bound state poles in the scattering amplitudes. In sine-Gordon model, these can be explicitly evaluated and shown to explain the observed discrepancies to high precision. It is argued that the effects observed are not special to the two-dimensional setting, but rather depend on general field theoretic features that are common with models relevant for particle physics. It is important to understand these finite size corrections as they present a potentially dangerous source of systematic errors for the determination of matrix elements and resonance widths.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    L. Maiani and M. Testa, Final state interactions from Euclidean correlation functions, Phys. Lett. B 245 (1990) 585 [INSPIRE].

    ADS  Google Scholar 

  2. [2]

    L. Lellouch and M. Lüscher, Weak transition matrix elements from finite volume correlation functions, Commun. Math. Phys. 219 (2001) 31 [hep-lat/0003023] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  3. [3]

    C. Lin, G. Martinelli, C.T. Sachrajda and M. Testa, K → π π decays in a finite volume, Nucl. Phys. B 619 (2001) 467 [hep-lat/0104006] [INSPIRE].

    ADS  Article  Google Scholar 

  4. [4]

    M. Lüscher, Signatures of unstable particles in finite volume, Nucl. Phys. B 364 (1991) 237 [INSPIRE].

    ADS  Article  Google Scholar 

  5. [5]

    A.B. Zamolodchikov and A.B. Zamolodchikov, Factorized S matrices in two-dimensions as the exact solutions of certain relativistic quantum field models, Annals Phys. 120 (1979) 253 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  6. [6]

    G. Mussardo, Off critical statistical models: factorized scattering theories and bootstrap program, Phys. Rept. 218 (1992) 215 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  7. [7]

    M. Karowski and P. Weisz, Exact form-factors in (1 + 1)-dimensional field theoretic models with soliton behavior, Nucl. Phys. B 139 (1978) 455 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  8. [8]

    A. Kirillov and F. Smirnov, A representation of the current algebra connected with the SU(2) invariant Thirring model, Phys. Lett. B 198 (1987) 506 [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  9. [9]

    F.A. Smirnov, Form-factors in completely integrable models of quantum field theory, Adv. Ser. Math. Phys. 14 (1992) 1.

    Google Scholar 

  10. [10]

    V. Yurov and A. Zamolodchikov, Truncated conformal space approach to scaling Lee-Yang model, Int. J. Mod. Phys. A 5 (1990) 3221 [INSPIRE].

    ADS  Google Scholar 

  11. [11]

    B. Pozsgay and G. Takács, Characterization of resonances using finite size effects, Nucl. Phys. B 748 (2006) 485 [hep-th/0604022] [INSPIRE].

    ADS  Article  Google Scholar 

  12. [12]

    B. Pozsgay and G. Takács, Form-factors in finite volume I: form-factor bootstrap and truncated conformal space, Nucl. Phys. B 788 (2008) 167 [arXiv:0706.1445] [INSPIRE].

    ADS  Article  Google Scholar 

  13. [13]

    B. Pozsgay and G. Takács, Form factors in finite volume. II. Disconnected terms and finite temperature correlators, Nucl. Phys. B 788 (2008) 209 [arXiv:0706.3605] [INSPIRE].

    ADS  Article  Google Scholar 

  14. [14]

    B. Pozsgay, Lüschers μ-term and finite volume bootstrap principle for scattering states and form factors, Nucl. Phys. B 802 (2008) 435 [arXiv:0803.4445] [INSPIRE].

    ADS  Article  Google Scholar 

  15. [15]

    Z. Bajnok, L. Palla, G. Takács and F. Wagner, The k folded sine-Gordon model in finite volume, Nucl. Phys. B 587 (2000) 585 [hep-th/0004181] [INSPIRE].

    ADS  Article  Google Scholar 

  16. [16]

    G. Feher and G. Takács, Sine-Gordon form factors in finite volume, Nucl. Phys. B 852 (2011) 441 [arXiv:1106.1901] [INSPIRE].

    ADS  Article  Google Scholar 

  17. [17]

    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 2. Scattering states, Commun. Math. Phys. 105 (1986) 153.

    ADS  Article  Google Scholar 

  18. [18]

    M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    M. Lüscher, Volume dependence of the energy spectrum in massive quantum field theories. 1. Stable particle states, Commun. Math. Phys. 104 (1986) 177.

    ADS  MATH  Article  Google Scholar 

  20. [20]

    T.R. Klassen and E. Melzer, On the relation between scattering amplitudes and finite size mass corrections in QFT, Nucl. Phys. B 362 (1991) 329 [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  21. [21]

    G. Feverati, F. Ravanini and G. Takács, Truncated conformal space at c = 1, nonlinear integral equation and quantization rules for multi-soliton states, Phys. Lett. B 430 (1998) 264 [hep-th/9803104] [INSPIRE].

    ADS  Google Scholar 

  22. [22]

    G. Delfino, G. Mussardo and P. Simonetti, Nonintegrable quantum field theories as perturbations of certain integrable models, Nucl. Phys. B 473 (1996) 469 [hep-th/9603011] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  23. [23]

    G. Takács, Form factor perturbation theory from finite volume, Nucl. Phys. B 825 (2010) 466 [arXiv:0907.2109] [INSPIRE].

    ADS  Article  Google Scholar 

  24. [24]

    G. Delfino and G. Mussardo, Nonintegrable aspects of the multifrequency sine-Gordon model, Nucl. Phys. B 516 (1998) 675 [hep-th/9709028] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  25. [25]

    M. Fabrizio, A. Gogolin and A. Nersesian, Critical properties of the double frequency sine-Gordon model with applications, Nucl. Phys. B 580 (2000) 647 [cond-mat/0001227] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    Z. Bajnok, L. Palla, G. Takács and F. Wagner, Nonperturbative study of the two frequency sine-Gordon model, Nucl. Phys. B 601 (2001) 503 [hep-th/0008066] [INSPIRE].

    ADS  Article  Google Scholar 

  27. [27]

    G. Mussardo, V. Riva and G. Sotkov, Semiclassical particle spectrum of double sine-Gordon model, Nucl. Phys. B 687 (2004) 189 [hep-th/0402179] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  28. [28]

    G. Takács and F. Wagner, Double sine-Gordon model revisited, Nucl. Phys. B 741 (2006) 353 [hep-th/0512265] [INSPIRE].

    ADS  Article  Google Scholar 

  29. [29]

    J. Gasser and H. Leutwyler, Light quarks at low temperatures, Phys. Lett. B 184 (1987) 83 [INSPIRE].

    ADS  Google Scholar 

  30. [30]

    J. Gasser and H. Leutwyler, Thermodynamics of chiral symmetry, Phys. Lett. B 188 (1987) 477 [INSPIRE].

    ADS  Google Scholar 

  31. [31]

    J. Gasser and H. Leutwyler, Spontaneously broken symmetries: effective Lagrangians at finite volume, Nucl. Phys. B 307 (1988) 763 [INSPIRE].

    ADS  Article  Google Scholar 

  32. [32]

    S.R. Sharpe, Quenched chiral logarithms, Phys. Rev. D 46 (1992) 3146 [hep-lat/9205020] [INSPIRE].

    ADS  Google Scholar 

  33. [33]

    MILC Collaboration collaboration, C. Bernard, Chiral logs in the presence of staggered flavor symmetry breaking, Phys. Rev. D 65 (2002) 054031 [hep-lat/0111051] [INSPIRE].

    ADS  Google Scholar 

  34. [34]

    S.R. Coleman and H. Thun, On the prosaic origin of the double poles in the sine-Gordon S matrix, Commun. Math. Phys. 61 (1978) 31.

    MathSciNet  ADS  Article  Google Scholar 

  35. [35]

    A. Koubek and G. Mussardo, On the operator content of the sinh-Gordon model, Phys. Lett. B 311 (1993) 193 [hep-th/9306044] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

  36. [36]

    S.L. Lukyanov and A.B. Zamolodchikov, Exact expectation values of local fields in quantum sine-Gordon model, Nucl. Phys. B 493 (1997) 571 [hep-th/9611238] [INSPIRE].

    MathSciNet  ADS  Article  Google Scholar 

  37. [37]

    A.B. Zamolodchikov, Mass scale in the sine-Gordon model and its reductions, Int. J. Mod. Phys. A 10 (1995) 1125 [INSPIRE].

    ADS  Google Scholar 

  38. [38]

    S.L. Lukyanov, Form-factors of exponential fields in the sine-Gordon model, Mod. Phys. Lett. A 12 (1997) 2543 [hep-th/9703190] [INSPIRE].

    MathSciNet  ADS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Takács.

Additional information

ArXiv ePrint: 1110.2181

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Takács, G. Determining matrix elements and resonance widths from finite volume: the dangerous μ-terms. J. High Energ. Phys. 2011, 113 (2011). https://doi.org/10.1007/JHEP11(2011)113

Download citation

Keywords

  • Field Theories in Lower Dimensions
  • Exact S-Matrix
  • Bethe Ansatz
  • Integrable Field Theories