Production of light Higgs pairs in 2-Higgs doublet models via the Higgs-strahlung process at the LHC

Abstract

At the Large Hadron Collider, we prove the feasibility to detect pair production of the lightest CP -even Higgs boson h of a Type II 2-Higgs Doublet Model through the process \( q{\overline q^{\left( ' \right)}} \to Vhh \) (Higgs-strahlung, V = W ± ,Z), in presence of two \( h \to b\overline b \) decays. We also show that, through such production and decay channels, one has direct access to the following Higgs self-couplings, thus enabling one to distinguish between a standard and the Supersymmetric version of the above model: λ Hhh — which constrains the form of the Higgs potential — as well as λ W ± H h and λ Z Ah — which are required by gauge invariance. Unfortunately, such claims cannot be extended to the Minimal Supersymmetric Standard Model, where the extraction of the same signals is impossible.

This is a preview of subscription content, access via your institution.

References

  1. [1]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, T he Higgs hunter’s guide, Addison Wesley, U.S.A. (1990).

  2. [2]

    J.F. Gunion, H.E. Haber, G.L. Kane and S. Dawson, Errata for the Higgs hunter’s guide, hep-ph/9302272 [SPIRES].

  3. [3]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    ADS  Article  Google Scholar 

  4. [4]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].

    ADS  Article  Google Scholar 

  5. [5]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. I: The Higgs boson in the standard model, Phys. Rept. 457 (2008) 1 [hep-ph/0503172] [SPIRES].

    ADS  Article  Google Scholar 

  6. [6]

    A. Djouadi, The anatomy of electro-weak symmetry breaking. II. The Higgs bosons in the minimal supersymmetric model, Phys. Rept. 459 (2008) 1 [hep-ph/0503173] [SPIRES].

    ADS  Article  Google Scholar 

  7. [7]

    ATLAS collaboration, ATLAS Technical proposal, CERN-LHCC-94-43 [SPIRES].

  8. [8]

    ATLAS collaboraion, ATLAS: detector and physics performance technical design report. Volume 1, ATLAS-TDR-014 [CERN-LHCC-99-14] [SPIRES].

  9. [9]

    The ATLAS collaboration, G. Aad et al., Expected performance of the ATLAS experimentDetector, trigger and physics, arXiv:0901.0512 [SPIRES].

  10. [10]

    CMS collaboration, CMS technical proposal, CERN-LHCC-94-38 [SPIRES].

  11. [11]

    CMS collaboration, CMS physics technical design report, volume I: detector performance and software, CERN-LHCC-2006-001 [SPIRES].

  12. [12]

    CDF and D0 collaboration, T. Aaltonen et al., Combination of Tevatron searches for the standard model Higgs boson in the W + W decay mode, Phys. Rev. Lett. 104 (2010) 061802 [arXiv:1001.4162] [SPIRES].

    ADS  Article  Google Scholar 

  13. [13]

    J.F. Gunion and H.E. Haber, The CP-conserving two-Higgs-doublet model: the approach to the decoupling limit, Phys. Rev. D 67 (2003) 075019 [hep-ph/0207010] [SPIRES].

    ADS  Google Scholar 

  14. [14]

    F. Boudjema and A. Semenov, Measurements of the SUSY Higgs self-couplings and the reconstruction of the Higgs potential, Phys. Rev. D 66 (2002) 095007 [hep-ph/0201219] [SPIRES].

    ADS  Google Scholar 

  15. [15]

    M. Moretti, S. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, Beyond the standard model Higgs boson self-couplings at the LHC, hep-ph/0411039 [SPIRES].

  16. [16]

    M. Moretti, S. Moretti, F. Piccinini, R. Pittau and J. Rathsman, Vector-boson production of light Higgs pairs in 2-Higgs doublet models, JHEP 12 (2007) 075 [arXiv:0706.4117] [SPIRES].

    ADS  Article  Google Scholar 

  17. [17]

    G. Ferrera, J. Guasch, D. Lopez-Val and J. Solà, Triple Higgs boson production in the linear collider, Phys. Lett. B 659 (2008) 297 [arXiv:0707.3162] [SPIRES].

    ADS  Google Scholar 

  18. [18]

    F. Gianotti et al., Physics potential and experimental challenges of the LHC luminosity upgrade, Eur. Phys. J. C 39 (2005) 293 [hep-ph/0204087] [SPIRES].

    ADS  Article  Google Scholar 

  19. [19]

    V.D. Barger, T. Han and R.J.N. Phillips, Double Higgs boson Bremsstrahlung from W and Z bosons at supercolliders, Phys. Rev. D 38 (1988) 2766 [SPIRES].

    ADS  Google Scholar 

  20. [20]

    A. Djouadi, W. Kilian, M. Muhlleitner and P.M. Zerwas, Production of neutral Higgs-boson pairs at LHC, Eur. Phys. J. C 10 (1999) 45 [hep-ph/9904287] [SPIRES].

    ADS  Article  Google Scholar 

  21. [21]

    Parton distribution functions, http://durpdg.dur.ac.uk/hepdata/pdf.html.

  22. [22]

    M.L. Mangano, M. Moretti, F. Piccinini, R. Pittau and A.D. Polosa, ALPGEN, a generator for hard multiparton processes in hadronic collisions, JHEP 07 (2003) 001 [hep-ph/0206293] [SPIRES].

    ADS  Article  Google Scholar 

  23. [23]

    H. Murayama, I. Watanabe and K. Hagiwara, Subroutines for Feynman diagram evaluations, KEK Report 91-11 (1992).

  24. [24]

    G.P. Lepage, A new algorithm for adaptive multidimensional integration, J. Comp. Phys. 27 (1978) 192.

    MATH  ADS  Article  Google Scholar 

  25. [25]

    H. Kharraziha and S. Moretti, The Metropolis algorithm for on-shell four-momentum phase space, Comput. Phys. Commun. 127 (2000) 242 [Erratum ibid. 134 (2001) 136] [hep-ph/9909313] [SPIRES].

    ADS  Article  Google Scholar 

  26. [26]

    M.S. Carena, P.H. Chankowski, S. Pokorski and C.E.M. Wagner, The Higgs boson mass as a probe of the minimal supersymmetric standard model, Phys. Lett. B 441 (1998) 205 [hep-ph/9805349] [SPIRES].

    ADS  Google Scholar 

  27. [27]

    A. Djouadi, J. Kalinowski and M. Spira, HDECAY: a program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun. 108 (1998) 56 [hep-ph/9704448] [SPIRES].

    MATH  ADS  Article  Google Scholar 

  28. [28]

    F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [SPIRES].

    ADS  Google Scholar 

  29. [29]

    O. Deschamps et al., The two Higgs doublet of type II facing flavour physics data, Phys. Rev. D 82 (2010) 073012 [arXiv:0907.5135] [SPIRES].

    ADS  Google Scholar 

  30. [30]

    A.G. Akeroyd, A. Arhrib and E.-M. Naimi, Note on tree-level unitarity in the general two Higgs doublet model, Phys. Lett. B 490 (2000) 119 [hep-ph/0006035] [SPIRES].

    ADS  Google Scholar 

  31. [31]

    I.F. Ginzburg and I.P. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys. Rev. D 72 (2005) 115010 [hep-ph/0508020] [SPIRES].

    ADS  Google Scholar 

  32. [32]

    E.W.N. Glover and J.J. van der Bij, Higgs boson pair production via gluon fusion, Nucl. Phys. B 309 (1988) 282 [SPIRES].

    ADS  Article  Google Scholar 

  33. [33]

    D.A. Dicus, C. Kao and S.S.D. Willenbrock, Higgs boson pair production from gluon fusion, Phys. Lett. B 203 (1988) 457 [SPIRES].

    ADS  Google Scholar 

  34. [34]

    J. Dai, J.F. Gunion and R. Vega, Detection of the minimal supersymmetric model Higgs boson H 0 in its h 0 h 0 → 4b and A 0 A 0 → 4b decay channels, Phys. Lett. B 371 (1996) 71 [hep-ph/9511319] [SPIRES].

    ADS  Google Scholar 

  35. [35]

    J. Dai, J.F. Gunion and R. Vega, Detection of neutral MSSM Higgs bosons in four-b final states at the Tevatron and the LHC: An update, Phys. Lett. B 387 (1996) 801 [hep-ph/9607379] [SPIRES].

    ADS  Google Scholar 

  36. [36]

    T. Plehn, M. Spira and P.M. Zerwas, Pair production of neutral Higgs particles in gluon-gluon collisions, Nucl. Phys. B 479 (1996) 46 [Erratum ibid. B 531 (1998) 655] [hep-ph/9603205] [SPIRES].

    ADS  Article  Google Scholar 

  37. [37]

    S. Moretti, Pair production of charged Higgs scalars from electroweak gauge boson fusion, J. Phys. G 28 (2002) 2567 [hep-ph/0102116] [SPIRES] [] [SPIRES].

    MathSciNet  ADS  Google Scholar 

  38. [38]

    U. Baur, T. Plehn and D.L. Rainwater, Determining the Higgs boson selfcoupling at hadron colliders, Phys. Rev. D 67 (2003) 033003 [hep-ph/0211224] [SPIRES].

    ADS  Google Scholar 

  39. [39]

    U. Baur, T. Plehn and D.L. Rainwater, Probing the Higgs selfcoupling at hadron colliders using rare decays, Phys. Rev. D 69 (2004) 053004 [hep-ph/0310056] [SPIRES].

    ADS  Google Scholar 

  40. [40]

    U. Baur, T. Plehn and D.L. Rainwater, Examining the Higgs boson potential at lepton and hadron colliders: a comparative analysis, Phys. Rev. D 68 (2003) 033001 [hep-ph/0304015] [SPIRES].

    ADS  Google Scholar 

  41. [41]

    S. Moretti and J. Rathsman, Pair production of charged Higgs bosons in association with bottom quark pairs at the Large Hadron Collider, Eur. Phys. J. C 33 (2004) 41 [hep-ph/0308215] [SPIRES].

    ADS  Google Scholar 

  42. [42]

    G.D. Kribs, T. Plehn, M. Spannowsky and T.M.P. Tait, Four generations and Higgs physics, Phys. Rev. D 76 (2007) 075016 [arXiv:0706.3718] [SPIRES].

    ADS  Google Scholar 

  43. [43]

    A. Arhrib, R. Benbrik, R.B. Guedes and R. Santos, Search for a light fermiophobic Higgs boson produced via gluon fusion at Hadron Colliders, Phys. Rev. D 78 (2008) 075002 [arXiv:0805.1603] [SPIRES].

    ADS  Google Scholar 

  44. [44]

    A. Arhrib, R. Benbrik, C.-H. Chen, R. Guedes and R. Santos, Double Neutral Higgs production in the two-Higgs doublet model at the LHC, JHEP 08 (2009) 035 [arXiv:0906.0387] [SPIRES].

    ADS  Article  Google Scholar 

  45. [45]

    D. Lopez-Val and J. Solà, Neutral Higgs-pair production at linear colliders within the general 2H D M: quantum effects and triple Higgs boson self-interactions, Phys. Rev. D 81 (2010) 033003 [arXiv:0908.2898] [SPIRES];

    ADS  Google Scholar 

  46. [46]

    R.N. Hodgkinson, D. Lopez-Val and J. Solà, Higgs boson pair production through gauge boson fusion at linear colliders within the general 2HDM, Phys. Lett. B 673 (2009) 47 [arXiv:0901.2257] [SPIRES].

    ADS  Google Scholar 

  47. [47]

    N. Bernal, D. Lopez-Val and J. Solà, Single Higgs-boson production through gamma-gamma scattering within the general 2HDM, Phys. Lett. B 677 (2009) 39 [arXiv:0903.4978] [SPIRES].

    ADS  Google Scholar 

  48. [48]

    S. Moretti and W.J. Stirling, Contributions of below threshold decays to MSSM Higgs branching ratios, Phys. Lett. B 347 (1995) 291 [hep-ph/9412209] [SPIRES].

    ADS  Google Scholar 

  49. [49]

    S. Kanemura, S. Moretti, Y. Mukai, R. Santos and K. Yagyu, Distinctive Higgs signals of a type II 2HDM at the LHC, Phys. Rev. D 79 (2009) 055017 [arXiv:0901.0204] [SPIRES].

    ADS  Google Scholar 

  50. [50]

    D. Eriksson, J. Rathsman and O. Stal, 2HDM C — Two-Higgs-doublet model calculator physics and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [SPIRES].

    ADS  Article  MATH  Google Scholar 

  51. [51]

    D. Lopez-Val, J. Solà and N. Bernal, Quantum effects on Higgs-strahlung events at linear colliders within the general 2HDM , Phys. Rev. D 81 (2010) 113005 [arXiv:1003.4312] [SPIRES].

    ADS  Google Scholar 

  52. [52]

    LEP Higgs working group, LEP Higgs working group papers and notes http://lephiggs.web.cern.ch/LEPHIGGS/papers/.

  53. [53]

    S.I. Bityukov and N.V. Krasnikov, On the observability of a signal above background, Nucl. Instrum. Meth. A 452 (2000) 518.

    ADS  Google Scholar 

  54. [54]

    P.M. Ferreira and D.R.T. Jones, Bounds on scalar masses in two Higgs doublet models, JHEP 08 (2009) 069 [arXiv:0903.2856] [SPIRES].

    ADS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to F. Piccinini.

Additional information

ArXiv ePrint:1008.0820

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Moretti, M., Moretti, S., Piccinini, F. et al. Production of light Higgs pairs in 2-Higgs doublet models via the Higgs-strahlung process at the LHC. J. High Energ. Phys. 2010, 97 (2010). https://doi.org/10.1007/JHEP11(2010)097

Download citation

Keywords

  • Higgs Physics
  • Beyond Standard Model
  • Hadronic Colliders