Advertisement

Journal of High Energy Physics

, 2010:86 | Cite as

On the tensionless limit of string theory, off-shell higher spin interaction vertices and BCFW recursion relations

  • Angelos Fotopoulos
  • Mirian Tsulaia
Article

Abstract

We construct an off-shell extension of cubic interaction vertices between massless bosonic Higher Spin fields on a flat background which can be obtained from perturbative bosonic string theory. We demonstrate how to construct higher quartic interaction vertices using a simple particular example. We examine whether BCFW recursion relations for interacting Higher Spin theories are applicable. We argue that for several interesting examples such relations should exist, but consistency of the theories might require that we supplement Higher Spin field theories with extended and possibly non-local objects.

Keywords

Gauge Symmetry BRST Symmetry String Field Theory 

References

  1. [1]
    M.A. Vasiliev, Higher spin gauge theories in various dimensions, Fortsch. Phys. 52 (2004) 702 [hep-th/0401177] [SPIRES].zbMATHMathSciNetADSCrossRefGoogle Scholar
  2. [2]
    X. Bekaert, S. Cnockaert, C. Iazeolla and M.A. Vasiliev, Nonlinear higher spin theories in various dimensions, hep-th/0503128 [SPIRES].
  3. [3]
    D. Sorokin, Introduction to the classical theory of higher spins, AIP Conf. Proc. 767 (2005) 172 [hep-th/0405069] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    N. Bouatta, G. Compere and A. Sagnotti, An introduction to free higher-spin fields, hep-th/0409068 [SPIRES].
  5. [5]
    X. Bekaert, I.L. Buchbinder, A. Pashnev and M. Tsulaia, On higher spin theory: Strings, BRST, dimensional reductions, Class. Quant. Grav. 21 (2004) S1457 [hep-th/0312252] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    A. Campoleoni, Metric-like Lagrangian Formulations for Higher-Spin Fields of Mixed Symmetry, Riv. Nuovo Cim. 033 (2010) 123 [arXiv:0910.3155] [SPIRES].Google Scholar
  7. [7]
    D. Francia, On the relation between local and geometric Lagrangians for higher spins, J. Phys. Conf. Ser. 222 (2010) 012002 [arXiv:1001.3854] [SPIRES].ADSCrossRefGoogle Scholar
  8. [8]
    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, arXiv:1007.0435 [SPIRES].
  9. [9]
    A. Fotopoulos and M. Tsulaia, Gauge Invariant Lagrangians for Free and Interacting Higher Spin Fields. A Review of the BRST formulation, Int. J. Mod. Phys. A 24 (2009) 1 [arXiv:0805.1346] [SPIRES].MathSciNetADSGoogle Scholar
  10. [10]
    E.S. Fradkin and M.A. Vasiliev, Cubic Interaction in Extended Theories of Massless Higher Spin Fields, Nucl. Phys. B 291 (1987) 141 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E.S. Fradkin and M.A. Vasiliev, Candidate to the Role of Higher Spin Symmetry, Ann. Phys. 177 (1987) 63 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  12. [12]
    M.A. Vasiliev, Consistent equation for interacting gauge fields of all spins in (3+1)-dimensions, Phys. Lett. B 243 (1990) 378 [SPIRES].MathSciNetADSGoogle Scholar
  13. [13]
    M.A. Vasiliev, More on equations of motion for interacting massless fields of all spins in (3+1)-dimensions, Phys. Lett. B 285 (1992) 225 [SPIRES].MathSciNetADSGoogle Scholar
  14. [14]
    M.A. Vasiliev, Nonlinear equations for symmetric massless higher spin fields in (A)dS(d), Phys. Lett. B 567 (2003) 139 [hep-th/0304049] [SPIRES].MathSciNetADSGoogle Scholar
  15. [15]
    M.A. Vasiliev, On Conformal, SL(4,R) and Sp(8,R) Symmetries of 4d Massless Fields, Nucl. Phys. B 793 (2008) 469 [arXiv:0707.1085] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  16. [16]
    M.A. Vasiliev, Higher spin superalgebras in any dimension and their representations, JHEP 12 (2004) 046 [hep-th/0404124] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    E.D. Skvortsov and M.A. Vasiliev, Geometric formulation for partially massless fields, Nucl. Phys. B 756 (2006) 117 [hep-th/0601095] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    D.P. Sorokin and M.A. Vasiliev, Reducible higher-spin multiplets in flat and AdS spaces and their geometric frame-like formulation, Nucl. Phys. B 809 (2009) 110 [arXiv:0807.0206] [SPIRES]. MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    I.A. Bandos and J . Lukierski, Tensorial central charges and new superparticle models with fundamental spinor coordinates, Mod. Phys. Lett. A 14 (1999) 1257 [hep-th/9811022] [SPIRES]. MathSciNetADSGoogle Scholar
  20. [20]
    I.A. Bandos, J. Lukierski and D.P. Sorokin, Superparticle models with tensorial central charges, Phys. Rev. D 61 (2000) 045002 [hep-th/9904109] [SPIRES].MathSciNetADSGoogle Scholar
  21. [21]
    C. Fronsdal, Massless Fields with Integer Spin, Phys. Rev. D 18 (1978) 3624 [SPIRES].ADSGoogle Scholar
  22. [22]
    C. Fronsdal, Singletons and Massless, Integral Spin Fields on de Sitter Space (Elementary Particles in a Curved Space. 7, Phys. Rev. D 20 (1979) 848 [SPIRES].MathSciNetADSGoogle Scholar
  23. [23]
    S. Ouvry and J. Stern, Gauge fields of any spin and symmetry, Phys. Lett. B 177 (1986) 335 [SPIRES].MathSciNetADSGoogle Scholar
  24. [24]
    A.K.H. Bengtsson, I. Bengtsson and L. Brink, Cubic interaction terms for arbitrarily extended supermultiplets, Nucl. Phys. B 227 (1983) 41 [SPIRES].ADSCrossRefGoogle Scholar
  25. [25]
    F. Hussain, G. Thompson and P.D. Jarvis, Massive and Massless Gauge Fields of Any Spin and Symmetry, Phys. Lett. B 216 (1989) 139 [SPIRES].ADSGoogle Scholar
  26. [26]
    F.A. Berends, G.J.H. Burgers and H. van Dam, Explicit construction of conserved currents for massless fields of arbitrary spin, Nucl. Phys. B 271 (1986) 429 [SPIRES].ADSGoogle Scholar
  27. [27]
    A.K.H. Bengtsson, BRST approach to interacting higher spin gauge fields, Class. Quant. Grav. 5 (1988) 437 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    A. Pashnev and M.M. Tsulaia, Dimensional reduction and BRST approach to the description of a Regge trajectory, Mod. Phys. Lett. A 12 (1997) 861 [hep-th/9703010] [SPIRES].MathSciNetADSGoogle Scholar
  29. [29]
    I.L. Buchbinder, A. Pashnev and M. Tsulaia, Lagrangian formulation of the massless higher integer spin fields in the AdS background, Phys. Lett. B 523 (2001) 338 [hep-th/0109067] [SPIRES]. MathSciNetADSGoogle Scholar
  30. [30]
    I.L. Buchbinder, V.A. Krykhtin and A. Pashnev, BRST approach to Lagrangian construction for fermionic massless higher spin fields, Nucl. Phys. B 711 (2005) 367 [hep-th/0410215] [SPIRES]. MathSciNetADSGoogle Scholar
  31. [31]
    I.L. Buchbinder, V.A. Krykhtin, L.L. Ryskina and H. Takata, Gauge invariant Lagrangian construction for massive higher spin fermionic fields, Phys. Lett. B 641 (2006) 386 [hep-th/0603212] [SPIRES].MathSciNetADSGoogle Scholar
  32. [32]
    I.L. Buchbinder, A.V. Galajinsky and V.A. Krykhtin, Quartet unconstrained formulation for massless higher spin fields, Nucl. Phys. B 779 (2007) 155 [hep-th/0702161] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  33. [33]
    I.L. Buchbinder, A.V. Galajinsky and V.A. Krykhtin, Quartet unconstrained formulation for massless higher spin fields, Nucl. Phys. B 779 (2007) 155 [hep-th/0702161] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  34. [34]
    I.L. Buchbinder, V.A. Krykhtin and A.A. Reshetnyak, BRST approach to Lagrangian construction for fermionic higher spin fields in AdS space, Nucl. Phys. B 787 (2007) 211 [hep-th/0703049] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  35. [35]
    K.B. Alkalaev and M. Grigoriev, Unified BRST description of AdS gauge fields, Nucl. Phys. B 835 (2010) 197 [arXiv:0910.2690] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  36. [36]
    A.P. Isaev, S.O. Krivonos and O.V. Ogievetsky, BRST operators for W algebras, J. Math. Phys. 49 (2008) 073512 [arXiv:0802.3781] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  37. [37]
    R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional anti-de Sitter space, hep-th/9810231 [SPIRES].
  38. [38]
    R.R. Metsaev, Arbitrary spin massless bosonic fields in d-dimensional anti-de Sitter space, hep-th/9810231 [SPIRES].
  39. [39]
    Y.M. Zinoviev, Massive N =1 supermultiplets with arbitrary superspins, Nucl. Phys. B 785 (2007) 98 [arXiv:0704.1535] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  40. [40]
    P. de Medeiros and C. Hull, Exotic tensor gauge theory and duality, Commun. Math. Phys. 235 (2003) 255 [hep-th/0208155] [SPIRES].zbMATHADSCrossRefGoogle Scholar
  41. [41]
    P. de Medeiros and C. Hull, Geometric second order field equations for general tensor gauge fields, JHEP 05 (2003) 019 [hep-th/0303036] [SPIRES].CrossRefGoogle Scholar
  42. [42]
    R.R. Metsaev, Cubic interaction vertices for fermionic and bosonic arbitrary spin fields, arXiv:0712.3526 [SPIRES].
  43. [43]
    R.R. Metsaev, Cubic interaction vertices for massive and massless higher spin fields, Nucl. Phys. B 759 (2006) 147 [hep-th/0512342] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  44. [44]
    X. Bekaert, N. Boulanger and S. Cnockaert, Spin three gauge theory revisited, JHEP 01 (2006) 052 [hep-th/0508048] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  45. [45]
    N. Boulanger, S. Leclercq and S. Cnockaert, Parity violating vertices for spin-3 gauge fields, Phys. Rev. D 73 (2006) 065019 [hep-th/0509118] [SPIRES].MathSciNetADSGoogle Scholar
  46. [46]
    N. Boulanger and S. Leclercq, Consistent couplings between spin-2 and spin-3 massless fields, JHEP 11 (2006) 034 [hep-th/0609221] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  47. [47]
    N. Boulanger, S. Leclercq and P. Sundell, On The Uniqueness of Minimal Coupling in Higher-Spin Gauge Theory, JHEP 08 (2008) 056 [arXiv:0805.2764] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  48. [48]
    A. Fotopoulos and M. Tsulaia, Interacting Higher Spins and the High Energy Limit of the Bosonic String, Phys. Rev. D 76 (2007) 025014 [arXiv:0705.2939] [SPIRES].MathSciNetADSGoogle Scholar
  49. [49]
    Y.M. Zinoviev, On spin 3 interacting with gravity, Class. Quant. Grav. 26 (2009) 035022 [arXiv:0805.2226] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  50. [50]
    Y.M. Zinoviev, Spin 3 cubic vertices in a frame-like formalism, JHEP 08 (2010) 084 [arXiv:1007.0158] [SPIRES].ADSCrossRefGoogle Scholar
  51. [51]
    R. Manvelyan, K. Mkrtchyan and W. Rühl, General trilinear interaction for arbitrary even higher spin gauge fields, Nucl. Phys. B 836 (2010) 204 [arXiv:1003.2877] [SPIRES].ADSCrossRefGoogle Scholar
  52. [52]
    R. Manvelyan, K. Mkrtchyan and W. Ruehl, Direct construction of a cubic selfinteraction for higher spin gauge fields, arXiv:1002.1358 [SPIRES].
  53. [53]
    R. Manvelyan, K. Mkrtchyan and W. Rühl, Off-shell construction of some trilinear higher spin gauge field interactions, Nucl. Phys. B 826 (2010) 1 [arXiv:0903.0243] [SPIRES].ADSCrossRefGoogle Scholar
  54. [54]
    A. Fotopoulos, unpublished.Google Scholar
  55. [55]
    A. Sagnotti and M. Taronna, String Lessons for Higher-Spin Interactions, Nucl. Phys. B 842 (2011) 299 [arXiv:1006.5242] [SPIRES].ADSCrossRefGoogle Scholar
  56. [56]
    M. Taronna, Higher Spins and String Interactions, arXiv:1005.3061 [SPIRES].
  57. [57]
    D. Polyakov, Gravitational Couplings of Higher Spins from String Theory, Int. J. Mod. Phys. A 25 (2010) 4623 [arXiv:1005.5512] [SPIRES].ADSGoogle Scholar
  58. [58]
    D. Polyakov, Interactions of Massless Higher Spin Fields From String Theory, Phys. Rev. D 82 (2010) 066005 [arXiv:0910.5338] [SPIRES].ADSGoogle Scholar
  59. [59]
    F. Bastianelli and R. Bonezzi, U(N) spinning particles and higher spin equations on complex manifolds, JHEP 03 (2009) 063 [arXiv:0901.2311] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  60. [60]
    F. Bastianelli, O. Corradini and E. Latini, Spinning particles and higher spin fields on (A)dS backgrounds, JHEP 11 (2008) 054 [arXiv:0810.0188] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  61. [61]
    O. Corradini, Half-integer Higher Spin Fields in (A)dS from Spinning Particle Models, JHEP 09 (2010) 113 [arXiv:1006.4452] [SPIRES].ADSCrossRefGoogle Scholar
  62. [62]
    S. Deser and A. Waldron, Partial masslessness of higher spins in (A)dS, Nucl. Phys. B 607 (2001) 577 [hep-th/0103198] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  63. [63]
    A.R. Gover, A. Shaukat and A. Waldron, Weyl Invariance and the Origins of Mass, Phys. Lett. B 675 (2009) 93 [arXiv:0812.3364] [SPIRES].ADSGoogle Scholar
  64. [64]
    D. Cherney, E. Latini and A. Waldron, Generalized Einstein Operator Generating Functions, Phys. Lett. B 682 (2010) 472 [arXiv:0909.4578] [SPIRES].MathSciNetADSGoogle Scholar
  65. [65]
    R. Marnelius, Lagrangian higher spin field theories from the O(N) extended supersymmetric particle, arXiv:0906.2084 [SPIRES].
  66. [66]
    A. Sagnotti and M. Tsulaia, On higher spins and the tensionless limit of string theory, Nucl. Phys. B 682 (2004) 83 [hep-th/0311257] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  67. [67]
    A. Fotopoulos, K.L. Panigrahi and M. Tsulaia, Lagrangian formulation of higher spin theories on AdS space, Phys. Rev. D 74 (2006) 085029 [hep-th/0607248] [SPIRES].MathSciNetADSGoogle Scholar
  68. [68]
    I.L. Buchbinder, A. Fotopoulos, A.C. Petkou and M. Tsulaia, Constructing the cubic interaction vertex of higher spin gauge fields, Phys. Rev. D 74 (2006) 105018 [hep-th/0609082] [SPIRES].MathSciNetADSGoogle Scholar
  69. [69]
    A. Fotopoulos, N. Irges, A.C. Petkou and M. Tsulaia, Higher-Spin Gauge Fields Interacting with Scalars: The Lagrangian Cubic Vertex, JHEP 10 (2007) 021 [arXiv:0708.1399] [SPIRES]. MathSciNetADSCrossRefGoogle Scholar
  70. [70]
    A. Fotopoulos and M. Tsulaia, Current Exchanges for Reducible Higher Spin Modes on AdS, arXiv:1007.0747 [SPIRES].
  71. [71]
    A. Fotopoulos and M. Tsulaia, Current Exchanges for Reducible Higher Spin Multiplets and Gauge Fixing, JHEP 10 (2009) 050 [arXiv:0907.4061] [SPIRES].ADSCrossRefGoogle Scholar
  72. [72]
    D. Francia, J. Mourad and A. Sagnotti, Current exchanges and unconstrained higher spins, Nucl. Phys. B 773 (2007) 203 [hep-th/0701163] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  73. [73]
    D. Francia, J. Mourad and A. Sagnotti, (A)dS exchanges and partially-massless higher spins, Nucl. Phys. B 804 (2008) 383 [arXiv:0803.3832] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  74. [74]
    A. Sagnotti, Higher Spins and Current Exchanges, arXiv:1002.3388 [SPIRES].
  75. [75]
    X. Bekaert, E. Joung and J. Mourad, On higher spin interactions with matter, JHEP 05 (2009) 126 [arXiv:0903.3338] [SPIRES].ADSCrossRefGoogle Scholar
  76. [76]
    D. Francia and A. Sagnotti, On the geometry of higher-spin gauge fields, Class. Quant. Grav. 20 (2003) S473 [hep-th/0212185] [SPIRES].zbMATHMathSciNetADSCrossRefGoogle Scholar
  77. [77]
    D. Francia, String theory triplets and higher-spin curvatures, Phys. Lett. B 690 (2010) 90 [arXiv:1001.5003] [SPIRES].ADSGoogle Scholar
  78. [78]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  79. [79]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [SPIRES].MathSciNetADSGoogle Scholar
  80. [80]
    A.C. Petkou, Evaluating the AdS dual of the critical O(N) vector model, JHEP 03 (2003) 049 [hep-th/0302063] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  81. [81]
    R.G. Leigh and A.C. Petkou, Holography of the N =1 higher-spin theory on AdS 4, JHEP 06 (2003) 011 [hep-th/0304217] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  82. [82]
    M. Bianchi, J.F. Morales and H. Samtleben, On stringy AdS 5 ×S 5 and higher spin holography, JHEP 07 (2003) 062 [hep-th/0305052] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  83. [83]
    P. Haggi-Mani and B. Sundborg, Free large-N supersymmetric Yang-Mills theory as a string theory, JHEP 04 (2000) 031 [hep-th/0002189] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  84. [84]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [SPIRES].ADSCrossRefGoogle Scholar
  85. [85]
    S. Giombi and X. Yin, Higher Spins in AdS and Twistorial Holography, arXiv:1004.3736 [SPIRES].
  86. [86]
    D.J. Gross and P.F. Mende, String Theory Beyond the Planck Scale, Nucl. Phys. B 303 (1988) 407 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  87. [87]
    N. Moeller and P.C. West, Arbitrary four string scattering at high energy and fixed angle, Nucl. Phys. B 729 (2005) 1 [hep-th/0507152] [SPIRES].ADSCrossRefGoogle Scholar
  88. [88]
    G. Bonelli, On the tensionless limit of bosonic strings, infinite symmetries and higher spins, Nucl. Phys. B 669 (2003) 159 [hep-th/0305155] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  89. [89]
    U. Lindström and M. Zabzine, Tensionless strings, WZW models at critical level and massless higher spin fields, Phys. Lett. B 584 (2004) 178 [hep-th/0305098] [SPIRES].ADSGoogle Scholar
  90. [90]
    H. Gustafsson, U. Lindström, P. Saltsidis, B. Sundborg and R. van Unge, Hamiltonian BRST quantization of the conformal string, Nucl. Phys. B 440 (1995) 495 [hep-th/9410143] [SPIRES]. ADSCrossRefGoogle Scholar
  91. [91]
    U. Lindström and M. Roček, D =2 null superspaces, Phys. Lett. B 271 (1991) 79 [SPIRES].ADSGoogle Scholar
  92. [92]
    U. Lindström, B. Sundborg and G. Theodoridis, The Zero tension limit of the spinning string, Phys. Lett. B 258 (1991) 331 [SPIRES].ADSGoogle Scholar
  93. [93]
    U. Lindström, B. Sundborg and G. Theodoridis, The Zero tension limit of the superstring, Phys. Lett. B 253 (1991) 319 [SPIRES].ADSGoogle Scholar
  94. [94]
    A. Karlhede and U. Lindström, The classical bosonic string in the zero tension limit, Class. Quant. Grav. 3 (1986) L73 [SPIRES].ADSCrossRefGoogle Scholar
  95. [95]
    I.G. Koh and S. Ouvry, Interacting gauge fields of any spin and symmetry, Phys. Lett. B 179 (1986) 115 [Erratum ibid. B 183 (1987) 434 E] [SPIRES].MathSciNetADSGoogle Scholar
  96. [96]
    E. Witten, Perturbative gauge theory as a string theory in twistor space, Commun. Math. Phys. 252 (2004) 189 [hep-th/0312171] [SPIRES].zbMATHMathSciNetADSCrossRefGoogle Scholar
  97. [97]
    F. Cachazo, P. Svrček and E. Witten, MHV vertices and tree amplitudes in gauge theory, JHEP 09 (2004) 006 [hep-th/0403047] [SPIRES].ADSCrossRefGoogle Scholar
  98. [98]
    S.J. Parke and T.R. Taylor, An Amplitude for n Gluon Scattering, Phys. Rev. Lett. 56 (1986) 2459 [SPIRES].ADSCrossRefGoogle Scholar
  99. [99]
    R. Britto, F. Cachazo and B. Feng, New Recursion Relations for Tree Amplitudes of Gluons, Nucl. Phys. B 715 (2005) 499 [hep-th/0412308] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  100. [100]
    R. Britto, F. Cachazo, B. Feng and E. Witten, Direct Proof Of Tree-Level Recursion Relation In Yang-Mills Theory, Phys. Rev. Lett. 94 (2005) 181602 [hep-th/0501052] [SPIRES]. MathSciNetADSCrossRefGoogle Scholar
  101. [101]
    F. Cachazo and P. Svrček, Lectures on twistor strings and perturbative Yang-Mills theory, PoS(RTN2005)004 (2005) [hep-th/0504194] [SPIRES].
  102. [102]
    K. Risager, A direct proof of the CSW rules, JHEP 12 (2005) 003 [hep-th/0508206] [SPIRES]. ADSCrossRefGoogle Scholar
  103. [103]
    B. Feng, J. Wang, Y. Wang and Z. Zhang, BCFW Recursion Relation with Nonzero Boundary Contribution, JHEP 01 (2010) 019 [arXiv:0911.0301] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  104. [104]
    B. Feng and C.-Y. Liu, A note on the boundary contribution with bad deformation in gauge theory, JHEP 07 (2010) 093 [arXiv:1004.1282] [SPIRES].ADSCrossRefMathSciNetGoogle Scholar
  105. [105]
    R. Boels, K.J. Larsen, N.A. Obers and M. Vonk, MHV, CSW and BCFW: field theory structures in string theory amplitudes, JHEP 11 (2008) 015 [arXiv:0808.2598] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  106. [106]
    C. Cheung, D. O’Connell and B. Wecht, BCFW Recursion Relations and String Theory, JHEP 09 (2010) 052 [arXiv:1002.4674] [SPIRES].ADSCrossRefGoogle Scholar
  107. [107]
    R.H. Boels, D. Marmiroli and N.A. Obers, On-shell Recursion in String Theory, JHEP 10 (2010) 034 [arXiv:1002.5029] [SPIRES].ADSCrossRefGoogle Scholar
  108. [108]
    P. Benincasa and F. Cachazo, Consistency Conditions on the S-matrix of Massless Particles, arXiv:0705.4305 [SPIRES].
  109. [109]
    D.J. Gross and A. Jevicki, Operator Formulation of Interacting String Field Theory, Nucl. Phys. B 283 (1987) 1 [SPIRES].MathSciNetADSGoogle Scholar
  110. [110]
    D.J. Gross and A. Jevicki, Operator Formulation of Interacting String Field Theory. 2, Nucl. Phys. B 287 (1987) 225 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  111. [111]
    A. Neveu and P.C. West, Symmetries of the Interacting Gauge Covariant Bosonic String, Nucl. Phys. B 278 (1986) 601 [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  112. [112]
    A.K.H. Bengtsson, Structure of Higher Spin Gauge Interactions, J. Math. Phys. 48 (2007) 072302 [hep-th/0611067] [SPIRES].MathSciNetADSCrossRefGoogle Scholar
  113. [113]
    N. Arkani-Hamed and J. Kaplan, On Tree Amplitudes in Gauge Theory and Gravity, JHEP 04 (2008) 076 [arXiv:0801.2385] [SPIRES].MathSciNetCrossRefGoogle Scholar
  114. [114]
    R.C. Brower, J. Polchinski, M.J. Strassler and C.-I. Tan, The Pomeron and Gauge/String Duality, JHEP 12 (2007) 005 [hep-th/0603115] [SPIRES].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Dipartimento di Fisica Teorica dell’Università di Torino and INFN Sezione di TorinoTorinoItaly
  2. 2.Department of Mathematical SciencesUniversity of LiverpoolLiverpoolUnited Kingdom
  3. 3.Centre for Theoretical Chemistry and PhysicsMassey University of AucklandAucklandNew Zealand

Personalised recommendations