Journal of High Energy Physics

, 2010:80

Rephasing invariance and neutrino mixing

Article

Abstract

A rephasing invariant parametrization is introduced for three flavor neutrino mixing. For neutrino propagation in matter, these parameters are shown to obey evolution equations as functions of the induced neutrino mass. These equations are found to preserve (approximately) some characteristic features of the mixing matrix, resulting in solutions which exhibit striking patterns as the induced mass varies. The approximate solutions are compared to numerical integrations and found to be quite accurate.

Keywords

Neutrino Physics CP violation 

References

  1. [1]
    M. Doi, T. Kotani, H. Nishiura, K. Okuda and E. Takasugi, Neutrino masses and the double β decay, Phys. Lett. B 103 (1981) 219 [SPIRES].ADSGoogle Scholar
  2. [2]
    C.S. Lam, Neutrino 2-3 symmetry and inverted hierarchy, Phys. Rev. D 71 (2005) 093001 [hep-ph/0503159] [SPIRES].ADSGoogle Scholar
  3. [3]
    C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [SPIRES].CrossRefADSGoogle Scholar
  4. [4]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [SPIRES].ADSGoogle Scholar
  5. [5]
    Particle Data Group, The Cabibbo-Kobayashi-Maskawa quark-mixing matrix, Phys. Lett. B 592 (2004) 130.Google Scholar
  6. [6]
    S.P. Mikheyev and A.Yu. Smirnov, Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Yad. Phys. 42 (1985) 1441 [Sov. J. Nucl. Phys. 42 (1985) 42].ADSGoogle Scholar
  7. [7]
    S.P. Mikheev and A.Y. Smirnov, Resonant amplification of neutrino oscillations in matter and solar neutrino spectroscopy, Nuovo Cim. C9 (1986) 17 [SPIRES].ADSGoogle Scholar
  8. [8]
    L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [SPIRES].ADSGoogle Scholar
  9. [9]
    V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter effects on three-neutrino oscillations, Phys. Rev. D 22 (1980) 2718 [SPIRES].ADSGoogle Scholar
  10. [10]
    H.W. Zaglauer and K.H. Schwarzer, The mixing angles in matter for three generations of neutrinos and the MSW mechanism, Z. Phys. C 40 (1988) 273 [SPIRES].ADSGoogle Scholar
  11. [11]
    T. Ohlsson and H. Snellman, Three flavor neutrino oscillations in matter, J. Math. Phys. 41 (2000) 2768 [hep-ph/9910546] [SPIRES] [] [SPIRES].MATHCrossRefMathSciNetADSGoogle Scholar
  12. [12]
    M. Freund, Analytic approximations for three neutrino oscillation parameters and probabilities in matter, Phys. Rev. D 64 (2001) 053003 [hep-ph/0103300] [SPIRES].ADSGoogle Scholar
  13. [13]
    Z.-z. Xing, Flavor mixing and CP-violation of massive neutrinos, Int. J. Mod. Phys. A 19 (2004) 1 [hep-ph/0307359] [SPIRES].ADSGoogle Scholar
  14. [14]
    M. Honda, Y. Kao, N. Okamura and T. Takeuchi, A simple parameterization of matter effects on neutrino oscillations, hep-ph/0602115 [SPIRES].
  15. [15]
    S.H. Chiu, T.K. Kuo and L.-X. Liu, Neutrino mixing in matter, Phys. Lett. B 687 (2010) 184 [arXiv:1001.1469] [SPIRES].ADSGoogle Scholar
  16. [16]
    S.-H. Chiu, T.K. Kuo, T.-H. Lee and C. Xiong, Mass Matrices and Their Renormalization, Phys. Rev. D 79 (2009) 013012 [arXiv:0811.1806] [SPIRES].ADSGoogle Scholar
  17. [17]
    P.F. Harrison and W.G. Scott, CP and T violation in neutrino oscillations and invariance of Jarlskog’s determinant to matter effects, Phys. Lett. B 476 (2000) 349 [hep-ph/9912435] [SPIRES].ADSGoogle Scholar
  18. [18]
    V.A. Naumov, Berry’s phases for three neutrino oscillations in matter, Phys. Lett. B 323 (1994) 351 [SPIRES].ADSGoogle Scholar
  19. [19]
    K. Kimura, A. Takamura and H. Yokomakura, Exact formula of probability and CP-violation for neutrino oscillations in matter, Phys. Lett. B 537 (2002) 86 [hep-ph/0203099] [SPIRES].ADSGoogle Scholar
  20. [20]
    S. Toshev, On T violation in matter neutrino oscillations, Mod. Phys. Lett. A6 (1991) 455 [SPIRES].ADSGoogle Scholar
  21. [21]
    P.I. Krastev and S.T. Petcov, Resonance Amplification and t Violation Effects in Three Neutrino Oscillations in the Earth, Phys. Lett. B 205 (1988) 84 [SPIRES].ADSGoogle Scholar
  22. [22]
    C.S. Lam, A 2-3 symmetry in neutrino oscillations, Phys. Lett. B 507 (2001) 214 [hep-ph/0104116] [SPIRES].ADSGoogle Scholar
  23. [23]
    P.F. Harrison and W.G. Scott, mu -tau reflection symmetry in lepton mixing and neutrino oscillations, Phys. Lett. B 547 (2002) 219 [hep-ph/0210197] [SPIRES].ADSGoogle Scholar
  24. [24]
    T.-K. Kuo and J.T. Pantaleone, Neutrino Oscillations in Matter, Rev. Mod. Phys. 61 (1989) 937 [SPIRES].CrossRefADSGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2010

Authors and Affiliations

  1. 1.Physics Group, CGEChang UniversityKwei-ShanTaiwan
  2. 2.Department of PhysicsPurdue UniversityWest LafayetteU.S.A.

Personalised recommendations