Advertisement

Journal of High Energy Physics

, 2018:177 | Cite as

Bose-Fermi Chern-Simons dualities in the Higgsed phase

  • Sayantan Choudhury
  • Anshuman Dey
  • Indranil Halder
  • Sachin Jain
  • Lavneet Janagal
  • Shiraz Minwalla
  • Naveen Prabhakar
Open Access
Regular Article - Theoretical Physics
  • 43 Downloads

Abstract

It has been conjectured that fermions minimally coupled to a Chern-Simons gauge field define a conformal field theory (CFT) that is level-rank dual to Chern-Simons gauged Wilson-Fisher Bosons. The CFTs in question admit relevant deformations parametrized by a real mass. When the mass deformation is positive, the duality of the two deformed theories has previously been checked in detail in the large N limit by comparing explicit all orders results on both sides of the duality. In this paper we perform a similar check for the case of negative mass deformations. In this case the bosonic field condenses triggering the Higgs mechanism. The effective excitations in this phase are massive W bosons. By summing all leading large N graphs involving these W bosons we find an all orders (in the ’t Hooft coupling) result for the thermal free energy of the bosonic theory in the condensed phase. Our final answer perfectly matches the previously obtained fermionic free energy under the conjectured duality map.

Keywords

1/N Expansion Chern-Simons Theories Duality in Gauge Field Theories 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    S. Giombi, S. Minwalla, S. Prakash, S.P. Trivedi, S.R. Wadia and X. Yin, Chern-Simons Theory with Vector Fermion Matter, Eur. Phys. J. C 72 (2012) 2112 [arXiv:1110.4386] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    I.R. Klebanov and A.M. Polyakov, AdS dual of the critical O(N) vector model, Phys. Lett. B 550 (2002) 213 [hep-th/0210114] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  3. [3]
    E. Sezgin and P. Sundell, Massless higher spins and holography, Nucl. Phys. B 644 (2002) 303 [Erratum ibid. B 660 (2003) 403] [hep-th/0205131] [INSPIRE].
  4. [4]
    S. Giombi and X. Yin, Higher Spin Gauge Theory and Holography: The Three-Point Functions, JHEP 09 (2010) 115 [arXiv:0912.3462] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  5. [5]
    C.-M. Chang, S. Minwalla, T. Sharma and X. Yin, ABJ Triality: from Higher Spin Fields to Strings, J. Phys. A 46 (2013) 214009 [arXiv:1207.4485] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  6. [6]
    J. Maldacena and A. Zhiboedov, Constraining Conformal Field Theories with A Higher Spin Symmetry, J. Phys. A 46 (2013) 214011 [arXiv:1112.1016] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  7. [7]
    J. Maldacena and A. Zhiboedov, Constraining conformal field theories with a slightly broken higher spin symmetry, Class. Quant. Grav. 30 (2013) 104003 [arXiv:1204.3882] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  8. [8]
    O. Aharony, G. Gur-Ari and R. Yacoby, Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP 12 (2012) 028 [arXiv:1207.4593] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  9. [9]
    G. Gur-Ari and R. Yacoby, Correlators of Large N Fermionic Chern-Simons Vector Models, JHEP 02 (2013) 150 [arXiv:1211.1866] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  10. [10]
    A. Bedhotiya and S. Prakash, A test of bosonization at the level of four-point functions in Chern-Simons vector models, JHEP 12 (2015) 032 [arXiv:1506.05412] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  11. [11]
    G.J. Turiaci and A. Zhiboedov, Veneziano Amplitude of Vasiliev Theory, JHEP 10 (2018) 034 [arXiv:1802.04390] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  12. [12]
    O. Aharony, Baryons, monopoles and dualities in Chern-Simons-matter theories, JHEP 02 (2016) 093 [arXiv:1512.00161] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  13. [13]
    N. Seiberg, T. Senthil, C. Wang and E. Witten, A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys. 374 (2016) 395 [arXiv:1606.01989] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  14. [14]
    A. Karch and D. Tong, Particle-Vortex Duality from 3d Bosonization, Phys. Rev. X 6 (2016) 031043 [arXiv:1606.01893] [INSPIRE].CrossRefGoogle Scholar
  15. [15]
    J. Murugan and H. Nastase, Particle-vortex duality in topological insulators and superconductors, JHEP 05 (2017) 159 [arXiv:1606.01912] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  16. [16]
    S. Jain, S.P. Trivedi, S.R. Wadia and S. Yokoyama, Supersymmetric Chern-Simons Theories with Vector Matter, JHEP 10 (2012) 194 [arXiv:1207.4750] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  17. [17]
    S. Yokoyama, Chern-Simons-Fermion Vector Model with Chemical Potential, JHEP 01 (2013) 052 [arXiv:1210.4109] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  18. [18]
    O. Aharony, S. Giombi, G. Gur-Ari, J. Maldacena and R. Yacoby, The Thermal Free Energy in Large N Chern-Simons-Matter Theories, JHEP 03 (2013) 121 [arXiv:1211.4843] [INSPIRE].ADSCrossRefGoogle Scholar
  19. [19]
    S. Jain, S. Minwalla, T. Sharma, T. Takimi, S.R. Wadia and S. Yokoyama, Phases of large N vector Chern-Simons theories on S 2 × S 1, JHEP 09 (2013) 009 [arXiv:1301.6169] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    T. Takimi, Duality and higher temperature phases of large N Chern-Simons matter theories on S 2 × S 1, JHEP 07 (2013) 177 [arXiv:1304.3725] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  21. [21]
    S. Yokoyama, A Note on Large N Thermal Free Energy in Supersymmetric Chern-Simons Vector Models, JHEP 01 (2014) 148 [arXiv:1310.0902] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  22. [22]
    S. Jain, S. Minwalla and S. Yokoyama, Chern Simons duality with a fundamental boson and fermion, JHEP 11 (2013) 037 [arXiv:1305.7235] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    S. Minwalla and S. Yokoyama, Chern Simons Bosonization along RG Flows, JHEP 02 (2016) 103 [arXiv:1507.04546] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    G. Gur-Ari and R. Yacoby, Three Dimensional Bosonization From Supersymmetry, JHEP 11 (2015) 013 [arXiv:1507.04378] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  25. [25]
    M. Geracie, M. Goykhman and D.T. Son, Dense Chern-Simons Matter with Fermions at Large N, JHEP 04 (2016) 103 [arXiv:1511.04772] [INSPIRE].ADSMathSciNetzbMATHGoogle Scholar
  26. [26]
    S. Jain, M. Mandlik, S. Minwalla, T. Takimi, S.R. Wadia and S. Yokoyama, Unitarity, Crossing Symmetry and Duality of the S-matrix in large N Chern-Simons theories with fundamental matter, JHEP 04 (2015) 129 [arXiv:1404.6373] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  27. [27]
    Y. Dandekar, M. Mandlik and S. Minwalla, Poles in the S-Matrix of Relativistic Chern-Simons Matter theories from Quantum Mechanics, JHEP 04 (2015) 102 [arXiv:1407.1322] [INSPIRE].ADSCrossRefGoogle Scholar
  28. [28]
    K. Inbasekar, S. Jain, S. Mazumdar, S. Minwalla, V. Umesh and S. Yokoyama, Unitarity, crossing symmetry and duality in the scattering of \( \mathcal{N} \) = 1 SUSY matter Chern-Simons theories, JHEP 10 (2015) 176 [arXiv:1505.06571] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  29. [29]
    S. Yokoyama, Scattering Amplitude and Bosonization Duality in General Chern-Simons Vector Models, JHEP 09 (2016) 105 [arXiv:1604.01897] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  30. [30]
    K. Inbasekar, S. Jain, P. Nayak and V. Umesh, All tree level scattering amplitudes in Chern-Simons theories with fundamental matter, Phys. Rev. Lett. 121 (2018) 161601 [arXiv:1710.04227] [INSPIRE].ADSCrossRefGoogle Scholar
  31. [31]
    K. Inbasekar et al., Dual Superconformal Symmetry of \( \mathcal{N} \) = 2 Chern-Simons theory with Fundamental Matter and Non-Renormalization at Large N, arXiv:1711.02672 [INSPIRE].
  32. [32]
    F. Benini, C. Closset and S. Cremonesi, Comments on 3d Seiberg-like dualities, JHEP 10 (2011) 075 [arXiv:1108.5373] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    O. Aharony, G. Gur-Ari and R. Yacoby, d = 3 Bosonic Vector Models Coupled to Chern-Simons Gauge Theories, JHEP 03 (2012) 037 [arXiv:1110.4382] [INSPIRE].
  34. [34]
    W.A. Bardeen and M. Moshe, Spontaneous breaking of scale invariance in a D = 3 U(N) model with Chern-Simons gauge fields, JHEP 06 (2014) 113 [arXiv:1402.4196] [INSPIRE].ADSCrossRefGoogle Scholar
  35. [35]
    W.A. Bardeen, The Massive Fermion Phase for the U(N) Chern-Simons Gauge Theory in D = 3 at Large N, JHEP 10 (2014) 39 [arXiv:1404.7477] [INSPIRE].ADSCrossRefGoogle Scholar
  36. [36]
    V. Gurucharan and S. Prakash, Anomalous dimensions in non-supersymmetric bifundamental Chern-Simons theories, JHEP 09 (2014) 009 [Erratum ibid. 1711 (2017) 045] [arXiv:1404.7849] [INSPIRE].
  37. [37]
    Y. Frishman and J. Sonnenschein, Large N Chern-Simons with massive fundamental fermionsA model with no bound states, JHEP 12 (2014) 165 [arXiv:1409.6083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  38. [38]
    M. Moshe and J. Zinn-Justin, 3D Field Theories with Chern-Simons Term for Large N in the Weyl Gauge, JHEP 01 (2015) 054 [arXiv:1410.0558] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  39. [39]
    G. Gur-Ari, S.A. Hartnoll and R. Mahajan, Transport in Chern-Simons-Matter Theories, JHEP 07 (2016) 090 [arXiv:1605.01122] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  40. [40]
    S. Giombi, Higher Spin – CFT Duality, in Proceedings, Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), Boulder U.S.A. (2015), pg. 137 [arXiv:1607.02967] [INSPIRE].
  41. [41]
    S.R. Wadia, Chern-Simons theories with fundamental matter: A brief review of large N results including Fermi-Bose duality and the S-matrix, Int. J. Mod. Phys. A 31 (2016) 1630052.ADSCrossRefzbMATHGoogle Scholar
  42. [42]
    S. Giombi, V. Gurucharan, V. Kirilin, S. Prakash and E. Skvortsov, On the Higher-Spin Spectrum in Large N Chern-Simons Vector Models, JHEP 01 (2017) 058 [arXiv:1610.08472] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  43. [43]
    T. Nosaka and S. Yokoyama, Complete factorization in minimal \( \mathcal{N} \) = 4 Chern-Simons-matter theory, JHEP 01 (2018) 001 [arXiv:1706.07234] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  44. [44]
    S. Giombi, Testing the Boson/Fermion Duality on the Three-Sphere, arXiv:1707.06604 [INSPIRE].
  45. [45]
    V. Guru Charan and S. Prakash, On the Higher Spin Spectrum of Chern-Simons Theory coupled to Fermions in the Large Flavour Limit, JHEP 02 (2018) 094 [arXiv:1711.11300] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar
  46. [46]
    O. Aharony, S. Jain and S. Minwalla, to appear.Google Scholar
  47. [47]
    O. Aharony, P. Narayan and T. Sharma, On monopole operators in supersymmetric Chern-Simons-matter theories, JHEP 05 (2015) 117 [arXiv:1502.00945] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  48. [48]
    D. Radičević, Disorder Operators in Chern-Simons-Fermion Theories, JHEP 03 (2016) 131 [arXiv:1511.01902] [INSPIRE].ADSzbMATHGoogle Scholar
  49. [49]
    P.-S. Hsin and N. Seiberg, Level/rank Duality and Chern-Simons-Matter Theories, JHEP 09 (2016) 095 [arXiv:1607.07457] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  50. [50]
    D. Radičević, D. Tong and C. Turner, Non-Abelian 3d Bosonization and Quantum Hall States, JHEP 12 (2016) 067 [arXiv:1608.04732] [INSPIRE].ADSzbMATHGoogle Scholar
  51. [51]
    A. Karch, B. Robinson and D. Tong, More Abelian Dualities in 2 + 1 Dimensions, JHEP 01 (2017) 017 [arXiv:1609.04012] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  52. [52]
    O. Aharony, F. Benini, P.-S. Hsin and N. Seiberg, Chern-Simons-matter dualities with SO and USp gauge groups, JHEP 02 (2017) 072 [arXiv:1611.07874] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  53. [53]
    F. Benini, P.-S. Hsin and N. Seiberg, Comments on global symmetries, anomalies and duality in (2 + 1)d, JHEP 04 (2017) 135 [arXiv:1702.07035] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  54. [54]
    D. Gaiotto, Z. Komargodski and N. Seiberg, Time-reversal breaking in QCD 4 , walls and dualities in 2 + 1 dimensions, JHEP 01 (2018) 110 [arXiv:1708.06806] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  55. [55]
    K. Jensen and A. Karch, Bosonizing three-dimensional quiver gauge theories, JHEP 11 (2017) 018 [arXiv:1709.01083] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  56. [56]
    K. Jensen and A. Karch, Embedding three-dimensional bosonization dualities into string theory, JHEP 12 (2017) 031 [arXiv:1709.07872] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  57. [57]
    J. Gomis, Z. Komargodski and N. Seiberg, Phases Of Adjoint QCD 3 And Dualities, SciPost Phys. 5 (2018) 007 [arXiv:1710.03258] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    C. Cordova, P.-S. Hsin and N. Seiberg, Global Symmetries, Counterterms and Duality in Chern-Simons Matter Theories with Orthogonal Gauge Groups, SciPost Phys. 4 (2018) 021 [arXiv:1711.10008] [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    F. Benini, Three-dimensional dualities with bosons and fermions, JHEP 02 (2018) 068 [arXiv:1712.00020] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  60. [60]
    K. Jensen, A master bosonization duality, JHEP 01 (2018) 031 [arXiv:1712.04933] [INSPIRE].ADSMathSciNetCrossRefzbMATHGoogle Scholar
  61. [61]
    O. Aharony, J. Marsano, S. Minwalla, K. Papadodimas and M. Van Raamsdonk, The Hagedorndeconfinement phase transition in weakly coupled large N gauge theories, Adv. Theor. Math. Phys. 8 (2004) 603 [hep-th/0310285] [INSPIRE].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© The Author(s) 2018

Authors and Affiliations

  • Sayantan Choudhury
    • 1
  • Anshuman Dey
    • 2
  • Indranil Halder
    • 2
  • Sachin Jain
    • 3
  • Lavneet Janagal
    • 2
  • Shiraz Minwalla
    • 2
  • Naveen Prabhakar
    • 2
  1. 1.Theoretical Cosmology Group, Max Planck Institute for Gravitational PhysicsAlbert Einstein InstitutePotsdam-GolmGermany
  2. 2.Department of Theoretical PhysicsTata Institute of Fundamental ResearchMumbaiIndia
  3. 3.Indian Institute of Science Education and ResearchPuneIndia

Personalised recommendations