Abstract
Measurements of CP observables in B± → DK*± decays are presented, where D denotes a superposition of D0 and \( {\overline{D}}^0 \) meson states. Decays of the D meson to K−π+, K−K+, π−π+, K−π+π−π+ and π−π+π−π+ are used and the K*± meson is reconstructed in the K 0 S π± final state. This analysis uses a data sample of pp collisions collected with the LHCb experiment, corresponding to integrated luminosities of 1 fb−1, 2 fb−1 and 1.8 fb−1 at centre-of-mass energies \( \sqrt{s}=7 \) TeV, 8 TeV and 13 TeV, respectively. The sensitivity of the results to the CKM angle γ is discussed.

Change history
10 May 2018
The measurements of Aππ and RKK in B± → DK*± decays were incorrectly reported in the paper [1], due to a transposition of the systematic uncertainties. This error was present in the reporting of the individual systematic uncertainties, the correlation matrix, and in the calculation of RCP+.
10 May 2018
The measurements of A?? and RKK in B? ? DK*? decays were incorrectly reported in the paper [1], due to a transposition of the systematic uncertainties. This error was present in the reporting of the individual systematic uncertainties, the correlation matrix, and in the calculation of RCP+.
10 May 2018
The measurements of A���� and RKK in B�� ��� DK*�� decays were incorrectly reported in the paper [1], due to a transposition of the systematic uncertainties. This error was present in the reporting of the individual systematic uncertainties, the correlation matrix, and in the calculation of RCP+.
References
N. Cabibbo, Unitary symmetry and leptonic decays, Phys. Rev. Lett. 10 (1963) 531 [INSPIRE].
M. Kobayashi and T. Maskawa, CP violation in the renormalizable theory of weak interaction, Prog. Theor. Phys. 49 (1973) 652 [INSPIRE].
C. Jarlskog, Commutator of the quark mass matrices in the standard electroweak model and a measure of maximal CP-violation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].
LHCb collaboration, Measurement of the CKM angle γ from a combination of LHCb results, JHEP 12 (2016) 087 [arXiv:1611.03076] [LHCb-PAPER-2016-032] [CERN-EP-2016-270] [INSPIRE].
CKMfitter Group collaboration, J. Charles et al., CP violation and the CKM matrix: assessing the impact of the asymmetric B factories, Eur. Phys. J. C 41 (2005) 1 [hep-ph/0406184] [INSPIRE].
LHCb collaboration, Measurement of CP observables in B ± → DK ± and B ± → Dπ ± with two- and four-body D decays, Phys. Lett. B 760 (2016) 117 [arXiv:1603.08993] [LHCb-PAPER-2016-003] [CERN-EP-2016-065] [INSPIRE].
LHCb collaboration, Measurement of the CKM angle γ using B ± → DK ± with D → K 0S π + π −, K 0S K + K − decays, JHEP 10 (2014) 097 [arXiv:1408.2748] [LHCb-PAPER-2014-041] [CERN-PH-EP-2014-202] [INSPIRE].
LHCb collaboration, A study of CP violation in B ∓ → Dh ∓ (h = K, π) with the modes D → K ∓ π ± π 0 , D → π + π − π 0 and D → K + K − π 0, Phys. Rev. D 91 (2015) 112014 [arXiv:1504.05442] [CERN-PH-EP-2015-097] [LHCb-PAPER-2015-014] [INSPIRE].
M. Gronau and D. London, How to determine all the angles of the unitarity triangle from B 0 d → DK S and B 0 s → Dϕ, Phys. Lett. B 253 (1991) 483 [INSPIRE].
M. Gronau and D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265 (1991) 172 [INSPIRE].
D. Atwood, I. Dunietz and A. Soni, Enhanced CP-violation with \( B\to K{D}^0\left({\overline{D}}^0\right) \) modes and extraction of the CKM angle γ, Phys. Rev. Lett. 78 (1997) 3257 [hep-ph/9612433] [INSPIRE].
D. Atwood, I. Dunietz and A. Soni, Improved methods for observing CP-violation in B ± → KD and measuring the CKM phase γ, Phys. Rev. D 63 (2001) 036005 [hep-ph/0008090] [INSPIRE].
LHCb collaboration, Measurement of CP-violation parameters in B 0 → DK *0 decays, Phys. Rev. D 90 (2014) 112002 [arXiv:1407.8136] [LHCb-PAPER-2014-028] [CERN-PH-EP-2014-182] [INSPIRE].
D. Atwood and A. Soni, Role of charm factory in extracting CKM phase information via B → DK, Phys. Rev. D 68 (2003) 033003 [hep-ph/0304085] [INSPIRE].
S. Malde et al., First determination of the CP content of D → π + π − π + π − and updated determination of the CP contents of D → π + π − π 0 and D → K + K − π 0 , Phys. Lett. B 747 (2015) 9 [arXiv:1504.05878] [INSPIRE].
BaBar collaboration, B. Aubert et al., Measurement of CP-violation observables and parameters for the decays B ± → DK *±, Phys. Rev. D 80 (2009) 092001 [arXiv:0909.3981] [INSPIRE].
BaBar collaboration, B. Aubert et al., Improved measurement of the CKM angle γ in B ∓ → D (*) K (*∓) decays with a Dalitz plot analysis of D decays to K 0 S π + π − and K 0 S K + K −, Phys. Rev. D 78 (2008) 034023 [arXiv:0804.2089] [INSPIRE].
Belle collaboration, A. Poluektov et al., Measurement of ϕ 3 with a Dalitz plot analysis of B + → D (∗) K (∗)+ decay, Phys. Rev. D 73 (2006) 112009 [hep-ex/0604054] [INSPIRE].
W. Wang, CP violation effects on the measurement of the Cabibbo-Kobayashi-Maskawa angle γ from B → DK, Phys. Rev. Lett. 110 (2013) 061802 [arXiv:1211.4539] [INSPIRE].
M. Gronau, Improving bounds on γ in B ± → DK ± and B ±,0 → DX ±,0 s , Phys. Lett. B 557 (2003) 198 [hep-ph/0211282] [INSPIRE].
M. Rama, Effect of \( D\hbox{-} \overline{D} \) mixing in the extraction of gamma with B − → D 0 K − and B − → D 0 π − decays, Phys. Rev. D 89 (2014) 014021 [arXiv:1307.4384] [INSPIRE].
Y. Amhis et al., Averages of b-hadron, c-hadron and τ-lepton properties as of summer 2016, arXiv:1612.07233 [INSPIRE].
T. Evans, S. Harnew, J. Libby, S. Malde, J. Rademacker and G. Wilkinson, Improved determination of the D → K − π + π + π − coherence factor and associated hadronic parameters from a combination of \( {e}^{+}{e}^{-}\to \psi (3770)\to c\overline{c}\kern0.5em and\kern0.5em pp\to c\overline{c}X \) data, Phys. Lett. B 757 (2016) 520 [Erratum ibid. B 765 (2017) 402] [arXiv:1602.07430] [INSPIRE].
LHCb collaboration, First observation of \( {D}^0-{\overline{D}}^0 \) oscillations in D 0 → K + π − π + π − decays and measurement of the associated coherence parameters, Phys. Rev. Lett. 116 (2016) 241801 [arXiv:1602.07224] [LHCb-PAPER-2015-057] [CERN-EP-2016-021] [INSPIRE].
LHCb collaboration, The LHCb detector at the LHC, 2008 JINST 3 S08005 [INSPIRE].
LHCb collaboration, LHCb detector performance, Int. J. Mod. Phys. A 30 (2015) 1530022 [arXiv:1412.6352] [INSPIRE].
R. Aaij et al., The LHCb trigger and its performance in 2011, 2013 JINST 8 P04022 [arXiv:1211.3055] [INSPIRE].
V.V. Gligorov and M. Williams, Efficient, reliable and fast high-level triggering using a bonsai boosted decision tree, 2013 JINST 8 P02013 [arXiv:1210.6861] [INSPIRE].
LHCb collaboration, Measurement of forward J/ψ production cross-sections in pp collisions at \( \sqrt{s}=13 \) TeV, JHEP 10 (2015) 172 [Erratum ibid. 05 (2017) 063] [arXiv:1509.00771] [LHCb-PAPER-2015-037] [CERN-PH-EP-2015-222] [INSPIRE].
LHCb RICH Group collaboration, M. Adinolfi et al., Performance of the LHCb RICH detector at the LHC, Eur. Phys. J. C 73 (2013) 2431 [arXiv:1211.6759] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, PYTHIA 6.4 physics and manual, JHEP 05 (2006) 026 [hep-ph/0603175] [INSPIRE].
T. Sjöstrand, S. Mrenna and P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. Phys. Commun. 178 (2008) 852 [arXiv:0710.3820] [INSPIRE].
LHCb collaboration, Handling of the generation of primary events in Gauss, the LHCb simulation framework, J. Phys. Conf. Ser. 331 (2011) 032047 [INSPIRE].
D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A 462 (2001)152 [INSPIRE].
P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C 45 (2006) 97 [hep-ph/0506026] [INSPIRE].
GEANT4 collaboration, J. Allison et al., GEANT4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270 [INSPIRE].
GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. Phys. Conf. Ser. 331 (2011) 032023 [INSPIRE].
Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
W.D. Hulsbergen, Decay chain fitting with a Kalman filter, Nucl. Instrum. Meth. A 552 (2005) 566 [physics/0503191] [INSPIRE].
L. Breiman, J.H. Friedman, R.A. Olshen and C.J. Stone, Classification and regression trees, Wadsworth international group, Belmont CA U.S.A., (1984) [INSPIRE].
T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, Ph.D. thesis, Institute of Nuclear Physics, Krakow Poland, (1986) [INSPIRE].
LHCb collaboration, Measurement of CP observables in B ± → D (*) K ± and B ± → D (*) π ± decays, arXiv:1708.06370 [LHCb-PAPER-2017-021] [CERN-EP-2017-195] [INSPIRE].
LHCb collaboration, Model-independent measurement of the CKM angle γ using B 0 → DK *0 decays with D → K 0 S π + π − and K 0 S K + K −, JHEP 06 (2016) 131 [arXiv:1604.01525] [LHCb-PAPER-2016-006] [CERN-EP-2016-083] [INSPIRE].
LHCb collaboration, Measurement of the B ± production asymmetry and the CP asymmetry in B ± → J/ψK ± decays, Phys. Rev. D 95 (2017) 052005 [arXiv:1701.05501] [LHCb-PAPER-2016-054] [CERN-EP-2016-325] [INSPIRE].
LHCb collaboration, Measurement of CP asymmetry in D 0 → K − K + and D 0 → π − π + decays, JHEP 07 (2014) 041 [arXiv:1405.2797] [CERN-PH-EP-2014-082] [LHCb-PAPER-2014-013] [INSPIRE].
LHCb collaboration, Measurement of the D + s ‐ D − s production asymmetry in 7 TeV pp collisions, Phys. Lett. B 713 (2012) 186 [arXiv:1205.0897] [CERN-PH-EP-2012-114] [LHCb-PAPER-2012-009] [INSPIRE].
S.S. Wilks, The large-sample distribution of the likelihood ratio for testing composite hypotheses, Ann. Math. Statist. 9 (1938) 60 [INSPIRE].
LHCb collaboration, Dalitz plot analysis of \( {B}_s^0\to {\overline{D}}^0{K}^{-}{\pi}^{+} \) decays, Phys. Rev. D 90 (2014) 072003 [arXiv:1407.7712] [LHCb-PAPER-2014-036] [CERN-PH-EP-2014-184] [INSPIRE].
T. Latham, J. Back and P. Harrison, Laura++, a Dalitz plot fitting package, https://laura.hepforge.org/.
D. Aston et al., A study of K − π + scattering in the reaction K − p → K − π + n at 11 GeV/c, Nucl. Phys. B 296 (1988) 493 [INSPIRE].
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.