Journal of High Energy Physics

, 2017:152 | Cite as

A swamp of non-SUSY vacua

  • U. H. Danielsson
  • G. Dibitetto
  • S. C. Vargas
Open Access
Regular Article - Theoretical Physics


We consider known examples of non-supersymmetric AdS7 and AdS4 solutions arising from compactifications of massive type IIA supergravity and study their stability, taking into account the coupling between closed- and open-string sector excitations. Generically, open strings are found to develop modes with masses below the Breitenlohner-Freedman (BF) bound. We comment on the relation with the Weak Gravity Conjecture, and how this analysis may play an important role in examining the validity of non-supersymmetric constructions in string theory.


Supersymmetry Breaking Superstring Vacua AdS-CFT Correspondence 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    F. Denef and M.R. Douglas, Distributions of nonsupersymmetric flux vacua, JHEP 03 (2005) 061 [hep-th/0411183] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  2. [2]
    N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The String landscape, black holes and gravity as the weakest force, JHEP 06 (2007) 060 [hep-th/0601001] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    H. Ooguri and C. Vafa, Non-supersymmetric AdS and the Swampland, arXiv:1610.01533 [INSPIRE].
  4. [4]
    B. Freivogel and M. Kleban, Vacua Morghulis, arXiv:1610.04564 [INSPIRE].
  5. [5]
    G. Shiu, W. Cottrell and P. Soler, Weak Gravity Conjecture and Black Holes in \( \mathcal{N} \) = 2 Supergravity, PoS(CORFU2016)130 [INSPIRE].
  6. [6]
    G. Shiu, P. Soler and W. Cottrell, Weak Gravity Conjecture and Extremal Black Hole, arXiv:1611.06270 [INSPIRE].
  7. [7]
    H. Ooguri and L. Spodyneiko, New Kaluza-Klein instantons and the decay of AdS vacua, Phys. Rev. D 96 (2017) 026016 [arXiv:1703.03105] [INSPIRE].ADSGoogle Scholar
  8. [8]
    T. Banks, Note on a Paper by Ooguri and Vafa, arXiv:1611.08953 [INSPIRE].
  9. [9]
    U.H. Danielsson, G. Dibitetto and S.C. Vargas, Universal isolation in the AdS landscape, Phys. Rev. D 94 (2016) 126002 [arXiv:1605.09289] [INSPIRE].ADSGoogle Scholar
  10. [10]
    C. Kounnas, D. Lüst, P.M. Petropoulos and D. Tsimpis, AdS 4 flux vacua in type-II superstrings and their domain-wall solutions, JHEP 09 (2007) 051 [arXiv:0707.4270] [INSPIRE].ADSCrossRefGoogle Scholar
  11. [11]
    U. Danielsson and G. Dibitetto, Fate of stringy AdS vacua and the weak gravity conjecture, Phys. Rev. D 96 (2017) 026020 [arXiv:1611.01395] [INSPIRE].ADSGoogle Scholar
  12. [12]
    F. Apruzzi, G. Dibitetto and L. Tizzano, A new 6d fixed point from holography, JHEP 11 (2016) 126 [arXiv:1603.06576] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    J. Blaback, U.H. Danielsson, D. Junghans, T. Van Riet, T. Wrase and M. Zagermann, Smeared versus localised sources in flux compactifications, JHEP 12 (2010) 043 [arXiv:1009.1877] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    F. Apruzzi, M. Fazzi, D. Rosa and A. Tomasiello, All AdS 7 solutions of type-II supergravity, JHEP 04 (2014) 064 [arXiv:1309.2949] [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A. Passias, A. Rota and A. Tomasiello, Universal consistent truncation for 6d/7d gauge/gravity duals, JHEP 10 (2015) 187 [arXiv:1506.05462] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  16. [16]
    K. Behrndt and M. Cvetič, General N = 1 supersymmetric flux vacua of (massive) type IIA string theory, Phys. Rev. Lett. 95 (2005) 021601 [hep-th/0403049] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    P. Breitenlohner and D.Z. Freedman, Stability in Gauged Extended Supergravity, Annals Phys. 144 (1982) 249 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    G. Dibitetto, J.J. Fernández-Melgarejo and D. Marqués, All gaugings and stable de Sitter in D = 7 half-maximal supergravity, JHEP 11 (2015) 037 [arXiv:1506.01294] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    M. de Roo, D.B. Westra and S. Panda, de Sitter solutions in N = 4 matter coupled supergravity, JHEP 02 (2003) 003 [hep-th/0212216] [INSPIRE].
  20. [20]
    G. Dall’Agata, G. Villadoro and F. Zwirner, Type-IIA flux compactifications and N = 4 gauged supergravities, JHEP 08 (2009) 018 [arXiv:0906.0370] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    U. Danielsson, G. Dibitetto and A. Guarino, KK-monopoles and G-structures in M-theory/type IIA reductions, JHEP 02 (2015) 096 [arXiv:1411.0575] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  22. [22]
    G. Aldazabal and A. Font, A Second look at N = 1 supersymmetric AdS 4 vacua of type IIA supergravity, JHEP 02 (2008) 086 [arXiv:0712.1021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  23. [23]
    P. Koerber and S. Körs, A landscape of non-supersymmetric AdS vacua on coset manifolds, Phys. Rev. D 81 (2010) 105006 [arXiv:1001.0003] [INSPIRE].ADSGoogle Scholar
  24. [24]
    J.-P. Derendinger, C. Kounnas, P.M. Petropoulos and F. Zwirner, Superpotentials in IIA compactifications with general fluxes, Nucl. Phys. B 715 (2005) 211 [hep-th/0411276] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    G. Dibitetto, R. Linares and D. Roest, Flux Compactifications, Gauge Algebras and de Sitter, Phys. Lett. B 688 (2010) 96 [arXiv:1001.3982] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    G. Dibitetto, A. Guarino and D. Roest, Exceptional Flux Compactifications, JHEP 05 (2012) 056 [arXiv:1202.0770] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  27. [27]
    J. Schon and M. Weidner, Gauged N = 4 supergravities, JHEP 05 (2006) 034 [hep-th/0602024] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    G. Dibitetto, A. Guarino and D. Roest, Charting the landscape of N = 4 flux compactifications, JHEP 03 (2011) 137 [arXiv:1102.0239] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  29. [29]
    A. Borghese and D. Roest, Metastable supersymmetry breaking in extended supergravity, JHEP 05 (2011) 102 [arXiv:1012.3736] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations I, Commun. Math. Phys. 307 (2011) 17 [arXiv:1110.2007] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    S. Aretakis, Stability and Instability of Extreme Reissner-Nordström Black Hole Spacetimes for Linear Scalar Perturbations II, Annales Henri Poincaré 12 (2011) 1491 [arXiv:1110.2009] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  32. [32]
    J. Lucietti, K. Murata, H.S. Reall and N. Tanahashi, On the horizon instability of an extreme Reissner-Nordström black hole, JHEP 03 (2013) 035 [arXiv:1212.2557] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  33. [33]
    M.B. Green, H. Ooguri and J.H. Schwarz, Nondecoupling of Maximal Supergravity from the Superstring, Phys. Rev. Lett. 99 (2007) 041601 [arXiv:0704.0777] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  34. [34]
    R.C. Myers, Dielectric branes, JHEP 12 (1999) 022 [hep-th/9910053] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  35. [35]
    U.H. Danielsson, F.F. Gautason and T. Van Riet, Unstoppable brane-flux decay of \( \overline{\mathrm{D}6} \) branes, JHEP 03 (2017) 141 [arXiv:1609.06529] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  36. [36]
    D. Junghans, D. Schmidt and M. Zagermann, Curvature-induced Resolution of Anti-brane Singularities, JHEP 10 (2014) 034 [arXiv:1402.6040] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Department of Physics and AstronomyUppsala UniversityUppsalaSweden

Personalised recommendations