Advertisement

Journal of High Energy Physics

, 2017:151 | Cite as

Solving the Bars-Green equation for moving mesons in two-dimensional QCD

  • Yu Jia
  • Shuangran Liang
  • LiuJi Li
  • Xiaonu Xiong
Open Access
Regular Article - Theoretical Physics

Abstract

The two-dimensional QCD in the large N limit, generally referred to as the ’t Hooft model, is numerically investigated in the axial gauge in a comprehensive manner. The corresponding Bethe-Salpeter equation for a bound \( q\overline{q} \) pair, originally derived by Bars and Green in 1978, was first numerically tackled by Li and collaborators in late 1980s, yet only for the stationary mesons. In this paper, we make further progress by numerically solving the Bars-Green equation for moving mesons, ranging from the chiral pion to charmonium. By choosing several different quark masses, we computed the corresponding quark condensates, meson spectra and their decay constants for a variety of meson momenta, and found satisfactory agreement with their counterparts obtained using light-cone gauge, thus numerically verifed the gauge and Poincaré invariance of the ’t Hooft model. Moreover, we have explicitly confirmed that, as the meson gets more and more boosted, the large component of the Bars-Green wave function indeed approaches the corresponding ’t Hooft light-cone wave function, while the small component of the wave function rapidly fades away.

Keywords

1/N Expansion Field Theories in Lower Dimensions 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    C.J. Hamer, SU(2) Yang-Mills Theory in (1+1)-dimensions: A Finite Lattice Approach, Nucl. Phys. B 195 (1982) 503 [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    F. Berruto, L. Giusti, C. Hölbling and C. Rebbi, A study of the ’t Hooft model with the overlap Dirac operator, Phys. Rev. D 65 (2002) 094516 [hep-lat/0201010] [INSPIRE].
  3. [3]
    K. Hornbostel, S.J. Brodsky and H.C. Pauli, Light Cone Quantized QCD in (1+1)-Dimensions, Phys. Rev. D 41 (1990) 3814 [INSPIRE].ADSGoogle Scholar
  4. [4]
    G. ’t Hooft, A Planar Diagram Theory for Strong Interactions, Nucl. Phys. B 72 (1974) 461 [INSPIRE].
  5. [5]
    E. Witten, Baryons in the 1/n Expansion, Nucl. Phys. B 160 (1979) 57 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  6. [6]
    S.R. Coleman, Aspects of Symmetry, Chapter 8, 1/N, Cambridge University Press, (1985).Google Scholar
  7. [7]
    G. ’t Hooft, A Two-Dimensional Model for Mesons, Nucl. Phys. B 75 (1974) 461 [INSPIRE].
  8. [8]
    C.G. Callan Jr., N. Coote and D.J. Gross, Two-Dimensional Yang-Mills Theory: A Model of Quark Confinement, Phys. Rev. D 13 (1976) 1649 [INSPIRE].ADSGoogle Scholar
  9. [9]
    M.B. Einhorn, Form-Factors and Deep Inelastic Scattering in Two-Dimensional Quantum Chromodynamics, Phys. Rev. D 14 (1976) 3451 [INSPIRE].ADSGoogle Scholar
  10. [10]
    R.C. Brower, W.L. Spence and J.H. Weis, Bound States and Asymptotic Limits for QCD in Two-dimensions, Phys. Rev. D 19 (1979) 3024 [INSPIRE].ADSGoogle Scholar
  11. [11]
    F. Lenz, M. Thies, K. Yazaki and S. Levit, Hamiltonian formulation of two-dimensional gauge theories on the light cone, Annals Phys. 208 (1991) 1 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  12. [12]
    M. Burkardt, Off forward parton distributions in (1+1)-dimensional QCD, Phys. Rev. D 62 (2000) 094003 [hep-ph/0005209] [INSPIRE].
  13. [13]
    L. Ya. Glozman, V.K. Sazonov, M. Shifman and R.F. Wagenbrunn, How Chiral Symmetry Breaking Affects the Spectrum of the Light-Heavy Mesons in the ’t Hooft Model, Phys. Rev. D 85 (2012) 094030 [arXiv:1201.5814] [INSPIRE].
  14. [14]
    E. Witten, Chiral Symmetry, the 1/n Expansion and the SU(N) Thirring Model, Nucl. Phys. B 145 (1978) 110 [INSPIRE].ADSCrossRefGoogle Scholar
  15. [15]
    A.R. Zhitnitsky, On Chiral Symmetry Breaking in QCD in Two-dimensions (N cInfinity), Phys. Lett. B 165 (1985) 405 [Sov. J. Nucl. Phys. 43 (1986) 999] [Yad. Fiz. 43 (1986) 1553] [INSPIRE].
  16. [16]
    M. Li, Large-N Two-dimensional QCD and Chiral Symmetry, Phys. Rev. D 34 (1986) 3888 [INSPIRE].ADSGoogle Scholar
  17. [17]
    I. Bars and M.B. Green, Poincaré and Gauge Invariant Two-Dimensional QCD, Phys. Rev. D 17 (1978) 537 [INSPIRE].ADSGoogle Scholar
  18. [18]
    S.J. Brodsky, H.-C. Pauli and S.S. Pinsky, Quantum chromodynamics and other field theories on the light cone, Phys. Rept. 301 (1998) 299 [hep-ph/9705477] [INSPIRE].
  19. [19]
    M. Li, L. Wilets and M.C. Birse, QCD in Two-dimensions in the Axial Gauge, J. Phys. G 13 (1987) 915 [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    X. Ji, Parton Physics on a Euclidean Lattice, Phys. Rev. Lett. 110 (2013) 262002 [arXiv:1305.1539] [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    Yu. S. Kalashnikova and A.V. Nefediev, Two-dimensional QCD in the Coulomb gauge, Phys. Usp. 45 (2002) 347 [Usp. Fiz. Nauk 172 (2002) 378] [hep-ph/0111225] [INSPIRE].
  22. [22]
    V. Baluni, The Bose Form of Two-dimensional Quantum Chromodynamics, Phys. Lett. B 90 (1980) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    P.J. Steinhardt, Baryons and Baryonium in QCD in Two-dimensions, Nucl. Phys. B 176 (1980) 100 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    D. Amati and E. Rabinovici, On Chiral Realizations of Confining Theories, Phys. Lett. B 101 (1981) 407 [INSPIRE].ADSCrossRefGoogle Scholar
  25. [25]
    G. Bhattacharya, Equivalence Between Two-dimensional SU(n) QCD and Schwinger Model: An Analysis of Strong Coupling Phase, Nucl. Phys. B 205 (1982) 461 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    F. Berruto, G. Grignani and P. Sodano, The strongly coupled ’t Hooft model on the lattice, Phys. Rev. D 62 (2000) 054510 [hep-lat/9912038] [INSPIRE].
  27. [27]
    S.R. Coleman, There are no Goldstone bosons in two-dimensions, Commun. Math. Phys. 31 (1973) 259 [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  28. [28]
    V.L. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. 1. Classical systems, Zh. Eksp. Teor. Fiz. 59 (1970) 907 [Sov. Phys. JETP 32 (1971) 493] [INSPIRE].
  29. [29]
    J.M. Kosterlitz and D.J. Thouless, Ordering, metastability and phase transitions in two-dimensional systems, J. Phys. C 6 (1973) 1181 [INSPIRE].ADSGoogle Scholar
  30. [30]
    M. Burkardt, Trivial vacua, high orders in perturbation theory and nontrivial condensates, Phys. Rev. D 53 (1996) 933 [hep-ph/9509226] [INSPIRE].
  31. [31]
    B. Grinstein and R.F. Lebed, Explicit quark - hadron duality in heavy-light meson weak decays in the ’t Hooft model, Phys. Rev. D 57 (1998) 1366 [hep-ph/9708396] [INSPIRE].
  32. [32]
    T. Kuramoto and K. Yazaki, Interaction between two heavy mesons in QCD in two-dimensions, Nucl. Phys. A 572 (1994) 621 [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    J. Hadamard, Lectures on Cauchy’s problem in linear partial differential equations, Dover, New York, U.S.A. (1923).MATHGoogle Scholar
  34. [34]
    Y. Jia, S.-R. Liang, X. Xiong and R. Yu, in preparation.Google Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institute of High Energy Physics and Theoretical Physics Center for Science FacilitiesChinese Academy of SciencesBeijingChina
  2. 2.School of PhysicsUniversity of Chinese Academy of SciencesBeijingChina
  3. 3.Center for High Energy PhysicsPeking UniversityBeijingChina
  4. 4.Institute for Advanced Simulation, Institut für Kernphysik and Jülich Center for Hadron PhysicsJülichGermany
  5. 5.Istituto Nazionale di Fisica Nucleare, Sezione di PaviaPaviaItaly

Personalised recommendations