Advertisement

Journal of High Energy Physics

, 2017:150 | Cite as

Zγ production at NNLO including anomalous couplings

  • John M. Campbell
  • Tobias Neumann
  • Ciaran Williams
Open Access
Regular Article - Theoretical Physics

Abstract

In this paper we present a next-to-next-to-leading order (NNLO) QCD calculation of the processes ppl+lγ and \( pp\to \nu \overline{\nu}\gamma \) that we have implemented in MCFM. Our calculation includes QCD corrections at NNLO both for the Standard Model (SM) and additionally in the presence of Zγγ and ZZγ anomalous couplings. We compare our implementation, obtained using the jettiness slicing approach, with a previous SM calculation and find broad agreement. Focusing on the sensitivity of our results to the slicing parameter, we show that using our setup we are able to compute NNLO cross sections with numerical uncertainties of about 0.1%, which is small compared to residual scale uncertainties of a few percent. We study potential improvements using two different jettiness definitions and the inclusion of power corrections. At \( \sqrt{s}=13 \) TeV we present phenomenological results and consider as a background to H production. We find that, with typical cuts, the inclusion of NNLO corrections represents a small effect and loosens the extraction of limits on anomalous couplings by about 10%.

Keywords

QCD Phenomenology 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    CMS collaboration, Measurement of W γ and Zγ production in pp collisions at \( \sqrt{s}=7 \) TeV, Phys. Lett. B 701 (2011) 535 [arXiv:1105.2758] [INSPIRE].
  2. [2]
    ATLAS collaboration, Measurement of W γ and Zγ production in proton-proton collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector, JHEP 09 (2011) 072 [arXiv:1106.1592] [INSPIRE].
  3. [3]
    ATLAS collaboration, Measurement of W γ and Zγ production cross sections in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous triple gauge couplings with the ATLAS detector, Phys. Lett. B 717 (2012) 49 [arXiv:1205.2531] [INSPIRE].
  4. [4]
    CMS collaboration, Measurement of the production cross section for \( \mathrm{Z}\gamma \to \nu \overline{\nu}\gamma \) in pp collisions at \( \sqrt{s}=7 \) TeV and limits on ZZγ and Zγγ triple gauge boson couplings, JHEP 10 (2013)164 [arXiv:1309.1117] [INSPIRE].
  5. [5]
    ATLAS collaboration, Measurements of W γ and Zγ production in pp collisions at \( \sqrt{s}=7 \) TeV with the ATLAS detector at the LHC, Phys. Rev. D 87 (2013) 112003 [Erratum ibid. D 91 (2015) 119901] [arXiv:1302.1283] [INSPIRE].
  6. [6]
    CMS collaboration, Measurement of the W γ and Zγ inclusive cross sections in pp collisions at \( \sqrt{s}=7 \) TeV and limits on anomalous triple gauge boson couplings, Phys. Rev. D 89 (2014) 092005 [arXiv:1308.6832] [INSPIRE].
  7. [7]
    ATLAS collaboration, Search for new resonances in W γ and Zγ final states in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Lett. B 738 (2014) 428 [arXiv:1407.8150] [INSPIRE].
  8. [8]
    CMS collaboration, Measurement of the Zγ production cross section in pp collisions at 8 TeV and search for anomalous triple gauge boson couplings, JHEP 04 (2015) 164 [arXiv:1502.05664] [INSPIRE].
  9. [9]
    ATLAS collaboration, Measurements of Zγ and Zγγ production in pp collisions at \( \sqrt{s}=8 \) TeV with the ATLAS detector, Phys. Rev. D 93 (2016) 112002 [arXiv:1604.05232] [INSPIRE].
  10. [10]
    CMS collaboration, Measurement of the \( \mathrm{Z}\gamma \to \nu \overline{\nu}\gamma \) production cross section in pp collisions at \( \sqrt{s}=8 \) TeV and limits on anomalous ZZγ and Zγγ trilinear gauge boson couplings, Phys. Lett. B 760 (2016) 448 [arXiv:1602.07152] [INSPIRE].
  11. [11]
    CMS collaboration, Measurement of the production cross section for ppZ(νν)γ at \( \sqrt{s}=13 \) TeV at CMS, CMS-PAS-SMP-16-004, CERN, Geneva Switzerland, (2016).
  12. [12]
    ATLAS collaboration, Searches for the Zγ decay mode of the Higgs boson and for new high-mass resonances in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, JHEP 10 (2017)112 [arXiv:1708.00212] [INSPIRE].
  13. [13]
    ATLAS collaboration, Search for heavy resonances decaying to a Z boson and a photon in pp collisions at \( \sqrt{s}=13 \) TeV with the ATLAS detector, Phys. Lett. B 764 (2017) 11 [arXiv:1607.06363] [INSPIRE].
  14. [14]
    U. Baur and E.L. Berger, Probing the weak boson sector in Zγ production at hadron colliders, Phys. Rev. D 47 (1993) 4889 [INSPIRE].ADSGoogle Scholar
  15. [15]
    M. Spira, A. Djouadi, D. Graudenz and P.M. Zerwas, Higgs boson production at the LHC, Nucl. Phys. B 453 (1995) 17 [hep-ph/9504378] [INSPIRE].
  16. [16]
    A. Djouadi, V. Driesen, W. Hollik and A. Kraft, The Higgs photon-Z boson coupling revisited, Eur. Phys. J. C 1 (1998) 163 [hep-ph/9701342] [INSPIRE].
  17. [17]
    I. Low, J. Lykken and G. Shaughnessy, Singlet scalars as Higgs imposters at the Large Hadron Collider, Phys. Rev. D 84 (2011) 035027 [arXiv:1105.4587] [INSPIRE].ADSGoogle Scholar
  18. [18]
    P.J. Fox, R. Harnik, J. Kopp and Y. Tsai, Missing energy signatures of dark matter at the LHC, Phys. Rev. D 85 (2012) 056011 [arXiv:1109.4398] [INSPIRE].ADSGoogle Scholar
  19. [19]
    G. Bélanger, M. Heikinheimo and V. Sanz, Model-independent bounds on squarks from monophoton searches, JHEP 08 (2012) 151 [arXiv:1205.1463] [INSPIRE].ADSCrossRefGoogle Scholar
  20. [20]
    E. Gabrielli, M. Heikinheimo, B. Mele and M. Raidal, Dark photons and resonant monophoton signatures in Higgs boson decays at the LHC, Phys. Rev. D 90 (2014) 055032 [arXiv:1405.5196] [INSPIRE].ADSGoogle Scholar
  21. [21]
    F. Maltoni, A. Martini, K. Mawatari and B. Oexl, Signals of a superlight gravitino at the LHC, JHEP 04 (2015) 021 [arXiv:1502.01637] [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    R.W. Brown, D. Sahdev and K.O. Mikaelian, W ± Z 0 and W ±γ pair production in νe, pp and \( \overline{p}p \) collisions, Phys. Rev. D 20 (1979) 1164 [INSPIRE].ADSGoogle Scholar
  23. [23]
    F.M. Renard, Tests of neutral gauge boson selfcouplings with e + e γZ, Nucl. Phys. B 196 (1982) 93 [INSPIRE].
  24. [24]
    J. Ohnemus, Order α s calculations of hadronic W ± γ and Zγ production, Phys. Rev. D 47 (1993) 940 [INSPIRE].
  25. [25]
    J. Ohnemus, Hadronic Zγ production with QCD corrections and leptonic decays, Phys. Rev. D 51 (1995) 1068 [hep-ph/9407370] [INSPIRE].
  26. [26]
    U. Baur, T. Han and J. Ohnemus, QCD corrections and anomalous couplings in Zγ production at hadron colliders, Phys. Rev. D 57 (1998) 2823 [hep-ph/9710416] [INSPIRE].
  27. [27]
    L.J. Dixon, Z. Kunszt and A. Signer, Helicity amplitudes for O(α s) production of W + W , W ± Z, ZZ, W ± γ, or Zγ pairs at hadron colliders, Nucl. Phys. B 531 (1998) 3 [hep-ph/9803250] [INSPIRE].
  28. [28]
    D. De Florian and A. Signer, W γ and Zγ production at hadron colliders, Eur. Phys. J. C 16 (2000) 105 [hep-ph/0002138] [INSPIRE].
  29. [29]
    J.M. Campbell and R.K. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].
  30. [30]
    L. Ametller, E. Gava, N. Paver and D. Treleani, Role of the QCD induced gluon-gluon coupling to gauge boson pairs in the multi-TeV region, Phys. Rev. D 32 (1985) 1699 [INSPIRE].ADSGoogle Scholar
  31. [31]
    J.J. van der Bij and E.W.N. Glover, Photon Z boson pair production via gluon fusion, Phys. Lett. B 206 (1988) 701 [INSPIRE].ADSGoogle Scholar
  32. [32]
    K.L. Adamson, D. de Florian and A. Signer, Gluon induced contributions to Zγ production at hadron colliders, Phys. Rev. D 67 (2003) 034016 [hep-ph/0211295] [INSPIRE].
  33. [33]
    J.M. Campbell, R.K. Ellis and C. Williams, Vector boson pair production at the LHC, JHEP 07 (2011) 018 [arXiv:1105.0020] [INSPIRE].ADSCrossRefGoogle Scholar
  34. [34]
    W. Hollik and C. Meier, Electroweak corrections to γZ production at hadron colliders, Phys. Lett. B 590 (2004) 69 [hep-ph/0402281] [INSPIRE].
  35. [35]
    E. Accomando, A. Denner and S. Pozzorini, Electroweak correction effects in gauge boson pair production at the CERN LHC, Phys. Rev. D 65 (2002) 073003 [hep-ph/0110114] [INSPIRE].
  36. [36]
    E. Accomando, A. Denner and C. Meier, Electroweak corrections to W γ and Zγ production at the LHC, Eur. Phys. J. C 47 (2006) 125 [hep-ph/0509234] [INSPIRE].
  37. [37]
    A. Denner, S. Dittmaier, M. Hecht and C. Pasold, NLO QCD and electroweak corrections to Z + γ production with leptonic Z-boson decays, JHEP 02 (2016) 057 [arXiv:1510.08742] [INSPIRE].
  38. [38]
    M. Grazzini, S. Kallweit, D. Rathlev and A. Torre, Zγ production at hadron colliders in NNLO QCD, Phys. Lett. B 731 (2014) 204 [arXiv:1309.7000] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    M. Grazzini, S. Kallweit and D. Rathlev, W γ and Zγ production at the LHC in NNLO QCD, JHEP 07 (2015) 085 [arXiv:1504.01330] [INSPIRE].ADSCrossRefGoogle Scholar
  40. [40]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 108 (2012) 072001 [arXiv:1110.2375] [INSPIRE].ADSCrossRefGoogle Scholar
  41. [41]
    J.M. Campbell, R.K. Ellis, Y. Li and C. Williams, Predictions for diphoton production at the LHC through NNLO in QCD, JHEP 07 (2016) 148 [arXiv:1603.02663] [INSPIRE].ADSCrossRefGoogle Scholar
  42. [42]
    S. Catani, L. Cieri, D. de Florian, G. Ferrera and M. Grazzini, Erratum: Diphoton production at hadron colliders: a fully-differential QCD calculation at NNLO, Phys. Rev. Lett. 117 (2016) 089901 [arXiv:1110.2375v2].ADSCrossRefGoogle Scholar
  43. [43]
    S. Frixione, Isolated photons in perturbative QCD, Phys. Lett. B 429 (1998) 369 [hep-ph/9801442] [INSPIRE].
  44. [44]
    R. Boughezal, C. Focke, X. Liu and F. Petriello, W -boson production in association with a jet at next-to-next-to-leading order in perturbative QCD, Phys. Rev. Lett. 115 (2015) 062002 [arXiv:1504.02131] [INSPIRE].ADSCrossRefGoogle Scholar
  45. [45]
    J. Gaunt, M. Stahlhofen, F.J. Tackmann and J.R. Walsh, N -jettiness subtractions for NNLO QCD calculations, JHEP 09 (2015) 058 [arXiv:1505.04794] [INSPIRE].CrossRefGoogle Scholar
  46. [46]
    S. Catani and M. Grazzini, An NNLO subtraction formalism in hadron collisions and its application to Higgs boson production at the LHC, Phys. Rev. Lett. 98 (2007) 222002 [hep-ph/0703012] [INSPIRE].
  47. [47]
    R. Boughezal et al., Color singlet production at NNLO in MCFM, Eur. Phys. J. C 77 (2017) 7 [arXiv:1605.08011] [INSPIRE].ADSCrossRefGoogle Scholar
  48. [48]
    T. Gehrmann and L. Tancredi, Two-loop QCD helicity amplitudes for \( q\overline{q}\to {W}^{\pm}\gamma \) and \( q\overline{q}\to {\mathrm{Z}}^0\gamma \), JHEP 02 (2012) 004 [arXiv:1112.1531] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  49. [49]
    T. Gehrmann and E. Remiddi, Numerical evaluation of two-dimensional harmonic polylogarithms, Comput. Phys. Commun. 144 (2002) 200 [hep-ph/0111255] [INSPIRE].
  50. [50]
    J.M. Campbell, H.B. Hartanto and C. Williams, Next-to-leading order predictions for Zγ+jet and Zγγ final states at the LHC, JHEP 11 (2012) 162 [arXiv:1208.0566] [INSPIRE].ADSCrossRefGoogle Scholar
  51. [51]
    Z. Bern, L.J. Dixon and D.A. Kosower, One loop amplitudes for e + e to four partons, Nucl. Phys. B 513 (1998) 3 [hep-ph/9708239] [INSPIRE].
  52. [52]
    T. Gehrmann, E.W.N. Glover, T. Huber, N. Ikizlerli and C. Studerus, Calculation of the quark and gluon form factors to three loops in QCD, JHEP 06 (2010) 094 [arXiv:1004.3653] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  53. [53]
    P.A. Baikov, K.G. Chetyrkin, A.V. Smirnov, V.A. Smirnov and M. Steinhauser, Quark and gluon form factors to three loops, Phys. Rev. Lett. 102 (2009) 212002 [arXiv:0902.3519] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    R.N. Lee, A.V. Smirnov and V.A. Smirnov, Analytic results for massless three-loop form factors, JHEP 04 (2010) 020 [arXiv:1001.2887] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    T. Matsuura, S.C. van der Marck and W.L. van Neerven, The calculation of the second order soft and virtual contributions to the Drell-Yan cross-section, Nucl. Phys. B 319 (1989) 570 [INSPIRE].ADSCrossRefGoogle Scholar
  56. [56]
    F. Cascioli, P. Maierhofer and S. Pozzorini, Scattering amplitudes with open loops, Phys. Rev. Lett. 108 (2012) 111601 [arXiv:1111.5206] [INSPIRE].ADSCrossRefGoogle Scholar
  57. [57]
    J. Alwall et al., MadGraph/MadEvent v4: the new web generation, JHEP 09 (2007) 028 [arXiv:0706.2334] [INSPIRE].ADSCrossRefGoogle Scholar
  58. [58]
    K. Hagiwara, R.D. Peccei, D. Zeppenfeld and K. Hikasa, Probing the weak boson sector in e + e W + W , Nucl. Phys. B 282 (1987) 253 [INSPIRE].ADSCrossRefGoogle Scholar
  59. [59]
    G.J. Gounaris, J. Layssac and F.M. Renard, Signatures of the anomalous Zγ and ZZ production at the lepton and hadron colliders, Phys. Rev. D 61 (2000) 073013 [hep-ph/9910395] [INSPIRE].
  60. [60]
    F.A. Berends, W.T. Giele and H. Kuijf, Exact expressions for processes involving a vector boson and up to five partons, Nucl. Phys. B 321 (1989) 39 [INSPIRE].ADSCrossRefGoogle Scholar
  61. [61]
    Z. Bern, D. Forde, D.A. Kosower and P. Mastrolia, Twistor-inspired construction of electroweak vector boson currents, Phys. Rev. D 72 (2005) 025006 [hep-ph/0412167] [INSPIRE].
  62. [62]
    W.T. Giele and E.W.N. Glover, Higher order corrections to jet cross-sections in e + e annihilation, Phys. Rev. D 46 (1992) 1980 [INSPIRE].ADSGoogle Scholar
  63. [63]
    L.W. Garland, T. Gehrmann, E.W.N. Glover, A. Koukoutsakis and E. Remiddi, Two loop QCD helicity amplitudes for e + e → 3 jets, Nucl. Phys. B 642 (2002) 227 [hep-ph/0206067] [INSPIRE].
  64. [64]
    T. Gehrmann and E. Remiddi, Analytic continuation of massless two loop four point functions, Nucl. Phys. B 640 (2002) 379 [hep-ph/0207020] [INSPIRE].
  65. [65]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, N -jettiness: an inclusive event shape to veto jets, Phys. Rev. Lett. 105 (2010) 092002 [arXiv:1004.2489] [INSPIRE].ADSCrossRefGoogle Scholar
  66. [66]
    J. Gao, C.S. Li and H.X. Zhu, Top quark decay at next-to-next-to leading order in QCD, Phys. Rev. Lett. 110 (2013) 042001 [arXiv:1210.2808] [INSPIRE].ADSCrossRefGoogle Scholar
  67. [67]
    S. Catani and M.H. Seymour, A general algorithm for calculating jet cross-sections in NLO QCD, Nucl. Phys. B 485 (1997) 291 [Erratum ibid. B 510 (1998) 503] [hep-ph/9605323] [INSPIRE].
  68. [68]
    S. Catani and M.H. Seymour, The dipole formalism for the calculation of QCD jet cross-sections at next-to-leading order, Phys. Lett. B 378 (1996) 287 [hep-ph/9602277] [INSPIRE].
  69. [69]
    Particle Data Group collaboration, C. Patrignani et al., Review of particle physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  70. [70]
    L.A. Harland-Lang, A.D. Martin, P. Motylinski and R.S. Thorne, Parton distributions in the LHC era: MMHT 2014 PDFs, Eur. Phys. J. C 75 (2015) 204 [arXiv:1412.3989] [INSPIRE].ADSCrossRefGoogle Scholar
  71. [71]
    I. Moult, L. Rothen, I.W. Stewart, F.J. Tackmann and H.X. Zhu, Subleading power corrections for N -jettiness subtractions, Phys. Rev. D 95 (2017) 074023 [arXiv:1612.00450] [INSPIRE].ADSGoogle Scholar
  72. [72]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Factorization at the LHC: from PDFs to initial state jets, Phys. Rev. D 81 (2010) 094035 [arXiv:0910.0467] [INSPIRE].ADSGoogle Scholar
  73. [73]
    I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, The beam thrust cross section for Drell-Yan at NNLL order, Phys. Rev. Lett. 106 (2011) 032001 [arXiv:1005.4060] [INSPIRE].ADSCrossRefGoogle Scholar
  74. [74]
    C.F. Berger, C. Marcantonini, I.W. Stewart, F.J. Tackmann and W.J. Waalewijn, Higgs production with a central jet veto at NNLL+NNLO, JHEP 04 (2011) 092 [arXiv:1012.4480] [INSPIRE].ADSCrossRefGoogle Scholar
  75. [75]
    J.M. Campbell, R.K. Ellis and C. Williams, Direct photon production at next-to-next-to-leading order, Phys. Rev. Lett. 118 (2017) 222001 [arXiv:1612.04333] [INSPIRE].ADSCrossRefGoogle Scholar
  76. [76]
    R. Boughezal, X. Liu and F. Petriello, Power corrections in the N -jettiness subtraction scheme, JHEP 03 (2017) 160 [arXiv:1612.02911] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  77. [77]
    S. Dawson, P. Jaiswal, Y. Li, H. Ramani and M. Zeng, Resummation of jet veto logarithms at N 3 LL a + NNLO for W + W production at the LHC, Phys. Rev. D 94 (2016) 114014 [arXiv:1606.01034] [INSPIRE].ADSGoogle Scholar
  78. [78]
    ATLAS collaboration, Search for Higgs boson decays to a photon and a Z boson in pp collisions at \( \sqrt{s}=7 \) and 8 TeV with the ATLAS detector, Phys. Lett. B 732 (2014) 8 [arXiv:1402.3051] [INSPIRE].
  79. [79]
    D.R. Green, P. Meade and M.-A. Pleier, Multiboson interactions at the LHC, Rev. Mod. Phys. 89 (2017) 035008 [arXiv:1610.07572] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  80. [80]
    CDF collaboration, T. Aaltonen et al., Limits on anomalous trilinear gauge couplings in Zγ events from pp collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. Lett. 107 (2011) 051802 [arXiv:1103.2990] [INSPIRE].
  81. [81]
    D0 collaboration, V.M. Abazov et al., Zγ production and limits on anomalous ZZγ and Zγγ couplings in \( p\overline{p} \) collisions at \( \sqrt{s}=1.96 \) TeV, Phys. Rev. D 85 (2012) 052001 [arXiv:1111.3684] [INSPIRE].
  82. [82]
    A. Banfi, P.F. Monni, G.P. Salam and G. Zanderighi, Higgs and Z-boson production with a jet veto, Phys. Rev. Lett. 109 (2012) 202001 [arXiv:1206.4998] [INSPIRE].ADSCrossRefGoogle Scholar
  83. [83]
    I.W. Stewart and F.J. Tackmann, Theory uncertainties for Higgs and other searches using jet bins, Phys. Rev. D 85 (2012) 034011 [arXiv:1107.2117] [INSPIRE].ADSGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.FermilabBataviaU.S.A.
  2. 2.Department of PhysicsUniversity at Buffalo, The State University of New YorkBuffaloU.S.A.

Personalised recommendations