Journal of High Energy Physics

, 2017:148 | Cite as

Discrete gravity on random tensor network and holographic Rényi entropy

Open Access
Regular Article - Theoretical Physics


In this paper we apply the discrete gravity and Regge calculus to tensor networks and Anti-de Sitter/conformal field theory (AdS/CFT) correspondence. We construct the boundary many-body quantum state |Ψ〉 using random tensor networks as the holographic mapping, applied to the Wheeler-deWitt wave function of bulk Euclidean discrete gravity in 3 dimensions. The entanglement Rényi entropy of |Ψ〉 is shown to holographically relate to the on-shell action of Einstein gravity on a branch cover bulk manifold. The resulting Rényi entropy S n of |Ψ〉 approximates with high precision the Rényi entropy of ground state in 2-dimensional conformal field theory (CFT). In particular it reproduces the correct n dependence. Our results develop the framework of realizing the AdS3/CFT2 correspondence on random tensor networks, and provide a new proposal to approximate the CFT ground state.


AdS-CFT Correspondence Random Systems Gauge-gravity correspondence Lattice Models of Gravity 


Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.


  1. [1]
    J.C. Bridgeman and C.T. Chubb, Hand-waving and interpretive dance: an introductory course on tensor networks, J. Phys. A 50 (2017) 223001 [arXiv:1603.03039] [INSPIRE].ADSMathSciNetMATHGoogle Scholar
  2. [2]
    G. Evenbly and G. Vidal, Tensor network renormalization, Phys. Rev. Lett. 115 (2015) 180405 [arXiv:1412.0732].ADSMathSciNetCrossRefGoogle Scholar
  3. [3]
    A.J. Ferris and D. Poulin, Tensor networks and quantum error correction, Phys. Rev. Lett. 113 (2014) 030501.ADSCrossRefGoogle Scholar
  4. [4]
    E. Miles Stoudenmire and D.J. Schwab, Supervised learning with quantum-inspired tensor networks, arXiv:1605.05775.
  5. [5]
    A. Novikov, D. Podoprikhin, A. Osokin and D.P. Vetrov, Tensorizing neural networks, arXiv:1509.06569.
  6. [6]
    R. Orus, Advances on tensor network theory: symmetries, fermions, entanglement and holography, Eur. Phys. J. B 87 (2014) 280 [arXiv:1407.6552] [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    B. Swingle, Entanglement renormalization and holography, Phys. Rev. D 86 (2012) 065007 [arXiv:0905.1317] [INSPIRE].ADSGoogle Scholar
  8. [8]
    M. Van Raamsdonk, Lectures on Gravity and Entanglement, in the proceedings of the Theoretical Advanced Study Institute in Elementary Particle Physics: New Frontiers in Fields and Strings (TASI 2015), June 1-26, Boulder, U.S.A. (2015), arXiv:1609.00026 [INSPIRE].
  9. [9]
    E.P. Verlinde, Emergent gravity and the dark universe, SciPost Phys. 2 (2017) 016 [arXiv:1611.02269] [INSPIRE].CrossRefGoogle Scholar
  10. [10]
    S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT, Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090 [arXiv:1304.4926] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    X. Dong, A. Lewkowycz and M. Rangamani, Deriving covariant holographic entanglement, JHEP 11 (2016) 028 [arXiv:1607.07506] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  13. [13]
    H. Casini, M. Huerta and R.C. Myers, Towards a derivation of holographic entanglement entropy, JHEP 05 (2011) 036 [arXiv:1102.0440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  14. [14]
    L.-Y. Hung, R.C. Myers, M. Smolkin and A. Yale, Holographic calculations of Rényi entropy, JHEP 12 (2011) 047 [arXiv:1110.1084] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  15. [15]
    X. Dong, The gravity dual of Rényi entropy, Nature Commun. 7 (2016) 12472 [arXiv:1601.06788] [INSPIRE].ADSCrossRefGoogle Scholar
  16. [16]
    M. Rangamani and T. Takayanagi, Holographic entanglement entropy, Lect. Notes Phys. 931 (2017) pp.1-246 [arXiv:1609.01287] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  17. [17]
    J. de Boer and J.I. Jottar, Entanglement entropy and higher spin holography in AdS 3, JHEP 04 (2014) 089 [arXiv:1306.4347] [INSPIRE].CrossRefGoogle Scholar
  18. [18]
    B. Chen and J.-Q. Wu, Holographic entanglement entropy for a large class of states in 2D CFT, JHEP 09 (2016) 015 [arXiv:1605.06753] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  19. [19]
    X. Dong, Shape dependence of holographic Rényi entropy in conformal field theories, Phys. Rev. Lett. 116 (2016) 251602 [arXiv:1602.08493] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  20. [20]
    W. Song, Q. Wen and J. Xu, Modifications to holographic entanglement entropy in warped CFT, JHEP 02 (2017) 067 [arXiv:1610.00727] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  21. [21]
    M. Ammon, A. Castro and N. Iqbal, Wilson lines and entanglement entropy in higher spin gravity, JHEP 10 (2013) 110 [arXiv:1306.4338] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  22. [22]
    Y. Ling, P. Liu, C. Niu, J.-P. Wu and Z.-Y. Xian, Holographic entanglement entropy close to quantum phase transitions, JHEP 04 (2016) 114 [arXiv:1502.03661] [INSPIRE].ADSGoogle Scholar
  23. [23]
    Q. Hu and G. Vidal, Spacetime symmetries and conformal data in the continuous multiscale entanglement renormalization ansatz, Phys. Rev. Lett. 119 (2017) 010603 [arXiv:1703.04798] [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, Holographic quantum error-correcting codes: toy models for the bulk/boundary correspondence, JHEP 06 (2015) 149 [arXiv:1503.06237] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  25. [25]
    P. Hayden, S. Nezami, X.-L. Qi, N. Thomas, M. Walter and Z. Yang, Holographic duality from random tensor networks, JHEP 11 (2016) 009 [arXiv:1601.01694] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  26. [26]
    M. Miyaji, T. Takayanagi and K. Watanabe, From path integrals to tensor networks for the AdS/CFT correspondence, Phys. Rev. D 95 (2017) 066004 [arXiv:1609.04645] [INSPIRE].ADSGoogle Scholar
  27. [27]
    A. Bhattacharyya, Z.-S. Gao, L.-Y. Hung and S.-N. Liu, Exploring the tensor networks/AdS correspondence, JHEP 08 (2016) 086 [arXiv:1606.00621] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  28. [28]
    B. Czech, P.H. Nguyen and S. Swaminathan, A defect in holographic interpretations of tensor networks, JHEP 03 (2017) 090 [arXiv:1612.05698] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    Z.-X. Luo, E. Lake and Y.-S. Wu, The structure of fixed-point tensor network states characterizes the patterns of long-range entanglement, Phys. Rev. B 96 (2017) 035101 [arXiv:1611.01140] [INSPIRE].ADSCrossRefGoogle Scholar
  30. [30]
    K. Li et al., Measuring holographic entanglement entropy on a quantum simulator, arXiv:1705.00365 [INSPIRE].
  31. [31]
    X.-L. Qi, Exact holographic mapping and emergent space-time geometry, arXiv:1309.6282 [INSPIRE].
  32. [32]
    X.-L. Qi, Z. Yang and Y.-Z. You, Holographic coherent states from random tensor networks, JHEP 08 (2017) 060 [arXiv:1703.06533] [INSPIRE].ADSCrossRefGoogle Scholar
  33. [33]
    A. Bhattacharyya, L.-Y. Hung, Y. Lei and W. Li, Tensor network and (p-adic) AdS/CFT, arXiv:1703.05445 [INSPIRE].
  34. [34]
    G. Vidal, Class of quantum many-body states that can be efficiently simulated, Phys. Rev. Lett. 101 (2008) 110501 [quant-ph/0610099].
  35. [35]
    G. Vidal, Entanglement renormalization, Phys. Rev. Lett. 99 (2007) 220405 [cond-mat/0512165] [INSPIRE].
  36. [36]
    G. Evenbly and G. Vidal, Tensor network states and geometry, J. Stat. Phys. 145 (2011) 891 [arXiv:1106.1082].ADSMathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    A. May, Tensor networks for dynamic spacetimes, JHEP 06 (2017) 118 [arXiv:1611.06220] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  38. [38]
    Y. Li, M. Han, M. Grassl and B. Zeng, Invariant perfect tensors, New J. Phys. 19 (2017) 063029 [arXiv:1612.04504] [INSPIRE].ADSCrossRefGoogle Scholar
  39. [39]
    Y. Li, M. Han, D. Ruan and B. Zeng, Random invariant tensors, arXiv:1709.08370 [INSPIRE].
  40. [40]
    J. Cotler, P. Hayden, G. Salton, B. Swingle and M. Walter, Entanglement wedge reconstruction via universal recovery channels, arXiv:1704.05839 [INSPIRE].
  41. [41]
    G. Chirco, D. Oriti and M. Zhang, Group field theory and tensor networks: towards a Ryu-Takayanagi formula in full quantum gravity, arXiv:1701.01383 [INSPIRE].
  42. [42]
    F. Pastawski and J. Preskill, Code properties from holographic geometries, Phys. Rev. X 7 (2017) 021022 [arXiv:1612.00017] [INSPIRE].CrossRefGoogle Scholar
  43. [43]
    A. Peach and S.F. Ross, Tensor network models of multiboundary wormholes, Class. Quant. Grav. 34 (2017) 105011 [arXiv:1702.05984] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  44. [44]
    D.A. Roberts and B. Yoshida, Chaos and complexity by design, JHEP 04 (2017) 121 [arXiv:1610.04903] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  45. [45]
    P. Hosur, X.-L. Qi, D.A. Roberts and B. Yoshida, Chaos in quantum channels, JHEP 02 (2016) 004 [arXiv:1511.04021] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  46. [46]
    L. Smolin, Holographic relations in loop quantum gravity, arXiv:1608.02932 [INSPIRE].
  47. [47]
    M. Han, W. Huang and Y. Ma, Fundamental structure of loop quantum gravity, Int. J. Mod. Phys. D 16 (2007) 1397 [gr-qc/0509064] [INSPIRE].
  48. [48]
    A. Ashtekar and J. Lewandowski, Background independent quantum gravity: a status report, Class. Quant. Grav. 21 (2004) R53 [gr-qc/0404018] [INSPIRE].
  49. [49]
    T. Thiemann, Modern canonical quantum general relativity, Cambridge University Press, Cambridge U.K. (2007).CrossRefMATHGoogle Scholar
  50. [50]
    C. Rovelli and F. Vidotto, Covariant loop quantum gravity: an elementary introduction to quantum gravity and spinfoam theory, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2014).Google Scholar
  51. [51]
    M. Han and L.-Y. Hung, Loop quantum gravity, exact holographic mapping and holographic entanglement entropy, Phys. Rev. D 95 (2017) 024011 [arXiv:1610.02134] [INSPIRE].ADSGoogle Scholar
  52. [52]
    P. Calabrese and J.L. Cardy, Entanglement entropy and quantum field theory, J. Stat. Mech. 0406 (2004) P06002 [hep-th/0405152] [INSPIRE].MATHGoogle Scholar
  53. [53]
    B. Czech et al., Tensor network quotient takes the vacuum to the thermal state, Phys. Rev. B 94 (2016) 085101 [arXiv:1510.07637] [INSPIRE].ADSCrossRefGoogle Scholar
  54. [54]
    J. Barrett and P. Parker, Smooth limits of piecewise-linear approximations, J. Approx. Theor. 76 (1994) 107.MathSciNetCrossRefMATHGoogle Scholar
  55. [55]
    T. Regge, General relativity without coordinates, Nuovo Cim. 19 (1961) 558 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  56. [56]
    R. Friedberg and T.D. Lee, Derivation of Regge’s action from Einstein’s theory of general relativity, Nucl. Phys. B 242 (1984) 145 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  57. [57]
    S.S. Gubser et al., Edge length dynamics on graphs with applications to p-adic AdS/CFT, JHEP 06 (2017) 157 [arXiv:1612.09580] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  58. [58]
    B. Bahr and B. Dittrich, Improved and perfect actions in discrete gravity, Phys. Rev. D 80 (2009) 124030 [arXiv:0907.4323] [INSPIRE].ADSGoogle Scholar
  59. [59]
    J.B. Hartle and R. Sorkin, Boundary terms in the action for the Regge calculus, Gen. Rel. Grav. 13 (1981) 541 [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  60. [60]
    B. Bahr and B. Dittrich, Regge calculus from a new angle, New J. Phys. 12 (2010) 033010 [arXiv:0907.4325] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  61. [61]
    H.M. Haggard, M. Han, W. Kaminski and A. Riello, SL(2, ) Chern-Simons theory, a non-planar graph operator and 4D quantum gravity with a cosmological constant: semiclassical geometry, Nucl. Phys. B 900 (2015) 1 [arXiv:1412.7546] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  62. [62]
    A.W. Harrow, The church of the symmetric subspace, arXiv:1308.6595.
  63. [63]
    A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].ADSMathSciNetGoogle Scholar
  64. [64]
    D.L. Jafferis, Bulk reconstruction and the Hartle-Hawking wavefunction, arXiv:1703.01519 [INSPIRE].
  65. [65]
    J.W. Barrett, R.J. Dowdall, W.J. Fairbairn, F. Hellmann and R. Pereira, Lorentzian spin foam amplitudes: graphical calculus and asymptotics, Class. Quant. Grav. 27 (2010) 165009 [arXiv:0907.2440] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  66. [66]
    F. Conrady and L. Freidel, On the semiclassical limit of 4D spin foam models, Phys. Rev. D 78 (2008) 104023 [arXiv:0809.2280] [INSPIRE].ADSMATHGoogle Scholar
  67. [67]
    M. Han and M. Zhang, Asymptotics of spinfoam amplitude on simplicial manifold: Lorentzian theory, Class. Quant. Grav. 30 (2013) 165012 [arXiv:1109.0499] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  68. [68]
    M. Han, Einstein equation from covariant loop quantum gravity in semiclassical continuum limit, Phys. Rev. D 96 (2017) 024047 [arXiv:1705.09030] [INSPIRE].ADSGoogle Scholar
  69. [69]
    W. Kaminski, M. Kisielowski and H. Sahlmann, Asymptotic analysis of the EPRL model with timelike tetrahedra, arXiv:1705.02862 [INSPIRE].

Copyright information

© The Author(s) 2017

Authors and Affiliations

  1. 1.Institut für QuantengravitationUniversität Erlangen-NürnbergErlangenGermany
  2. 2.Department of PhysicsFlorida Atlantic UniversityBoca RatonU.S.A.
  3. 3.Institute for Interdisciplinary Information SciencesTsinghua UniversityBeijingChina

Personalised recommendations