Advertisement

Leptonic invariants, neutrino mass-ordering and the octant of θ 23

  • G. C. Branco
  • M. N. Rebelo
  • J. I. Silva-Marcos
Open Access
Regular Article - Theoretical Physics

Abstract

We point out that leptonic weak-basis invariants are an important tool for the study of the properties of lepton flavour models. In particular, we show that appropriately chosen invariants can give a clear indication of whether a particular lepton flavour model favours normal or inverted hierarchy for neutrino masses and what is the octant of θ 23. These invariants can be evaluated in any conveniently chosen weak-basis and can also be expressed in terms of neutrino masses, charged lepton masses, mixing angles and CP violation phases.

Keywords

Beyond Standard Model Neutrino Physics 

Notes

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

References

  1. [1]
    Daya Bay collaboration, F.P. An et al., Observation of electron-antineutrino disappearance at Daya Bay, Phys. Rev. Lett. 108 (2012) 171803 [arXiv:1203.1669] [INSPIRE].
  2. [2]
    NOvA collaboration, P. Adamson et al., Measurement of the neutrino mixing angle θ 23 in NOvA, Phys. Rev. Lett. 118 (2017) 151802 [arXiv:1701.05891] [INSPIRE].
  3. [3]
    Particle Data Group collaboration, C. Patrignani et al., Review of Particle Physics, Chin. Phys. C 40 (2016) 100001 [INSPIRE].
  4. [4]
    D.V. Forero, M. Tortola and J.W.F. Valle, Neutrino oscillations refitted, Phys. Rev. D 90 (2014) 093006 [arXiv:1405.7540] [INSPIRE].ADSGoogle Scholar
  5. [5]
    F. Capozzi, G.L. Fogli, E. Lisi, A. Marrone, D. Montanino and A. Palazzo, Status of three-neutrino oscillation parameters, circa 2013, Phys. Rev. D 89 (2014) 093018 [arXiv:1312.2878] [INSPIRE].ADSGoogle Scholar
  6. [6]
    M.C. Gonzalez-Garcia, M. Maltoni and T. Schwetz, Global Analyses of Neutrino Oscillation Experiments, Nucl. Phys. B 908 (2016) 199 [arXiv:1512.06856] [INSPIRE].ADSCrossRefMATHGoogle Scholar
  7. [7]
    G.C. Branco and J.I. Silva-Marcos, Invariants, Alignment and the Pattern of Fermion Masses and Mixing, Phys. Lett. B 715 (2012) 315 [arXiv:1112.1631] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    P. Minkowski, μeγ at a Rate of One Out of 109 Muon Decays?, Phys. Lett. B 67 (1977) 421 [INSPIRE].
  9. [9]
    T. Yanagida, Horizontal symmetry and masses of neutrinos, Conf. Proc. C 7902131 (1979) 95 [INSPIRE].Google Scholar
  10. [10]
    S.L. Glashow, The Future of Elementary Particle Physics, in Quarks And Leptons. Proceedings, Summer Institute, Cargese, France, 9–29 July 1979, M. Levy, J.L. Basdevant, D. Speiser, J. Weyers, R. Gastmans and M. Jacob eds., pp. 687–713 [NATO Sci. Ser. B 61 (1980) 1]Google Scholar
  11. [11]
    M. Gell-Mann, P. Ramond and R. Slansky, Complex Spinors and Unified Theories, Conf. Proc. C 790927 (1979) 315 [arXiv:1306.4669] [INSPIRE].Google Scholar
  12. [12]
    R.N. Mohapatra and G. Senjanović, Neutrino Mass and Spontaneous Parity Violation, Phys. Rev. Lett. 44 (1980) 912 [INSPIRE].ADSCrossRefGoogle Scholar
  13. [13]
    J.A. Aguilar-Saavedra and G.C. Branco, Unitarity triangles and geometrical description of CP-violation with Majorana neutrinos, Phys. Rev. D 62 (2000) 096009 [hep-ph/0007025] [INSPIRE].
  14. [14]
    G.C. Branco and M.N. Rebelo, Building the full PMNS Matrix from six independent Majorana-type phases, Phys. Rev. D 79 (2009) 013001 [arXiv:0809.2799] [INSPIRE].ADSGoogle Scholar
  15. [15]
    A. Pilaftsis, CP violation and baryogenesis due to heavy Majorana neutrinos, Phys. Rev. D 56 (1997) 5431 [hep-ph/9707235] [INSPIRE].
  16. [16]
    G.C. Branco, T. Morozumi, B.M. Nobre and M.N. Rebelo, A Bridge between CP-violation at low-energies and leptogenesis, Nucl. Phys. B 617 (2001) 475 [hep-ph/0107164] [INSPIRE].
  17. [17]
    S. Davidson and R. Kitano, Leptogenesis and a Jarlskog invariant, JHEP 03 (2004) 020 [hep-ph/0312007] [INSPIRE].
  18. [18]
    G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, Leptogenesis, Yukawa textures and weak basis invariants, Phys. Lett. B 633 (2006) 345 [hep-ph/0510412] [INSPIRE].
  19. [19]
    Y. Wang and Z.-z. Xing, Commutators of lepton mass matrices associated with the seesaw and leptogenesis mechanisms, Phys. Rev. D 89 (2014) 097301 [arXiv:1404.0109] [INSPIRE].ADSGoogle Scholar
  20. [20]
    G.C. Branco and L. Lavoura, Rephasing Invariant Parametrization of the Quark Mixing Matrix, Phys. Lett. B 208 (1988) 123 [INSPIRE].ADSCrossRefGoogle Scholar
  21. [21]
    J. Bernabeu, G.C. Branco and M. Gronau, CP restrictions on quark mass matrices, Phys. Lett. B 169 (1986) 243 [INSPIRE].ADSCrossRefGoogle Scholar
  22. [22]
    P.H. Frampton, S.L. Glashow and D. Marfatia, Zeroes of the neutrino mass matrix, Phys. Lett. B 536 (2002) 79 [hep-ph/0201008] [INSPIRE].
  23. [23]
    G.C. Branco, L. Lavoura and M.N. Rebelo, Majorana Neutrinos and CP Violation in the Leptonic Sector, Phys. Lett. B 180 (1986) 264 [INSPIRE].ADSCrossRefGoogle Scholar
  24. [24]
    H.K. Dreiner, J.S. Kim, O. Lebedev and M. Thormeier, Supersymmetric Jarlskog invariants: The Neutrino sector, Phys. Rev. D 76 (2007) 015006 [hep-ph/0703074] [INSPIRE].
  25. [25]
    G.C. Branco, M.N. Rebelo and J.I. Silva-Marcos, Degenerate and quasidegenerate Majorana neutrinos, Phys. Rev. Lett. 82 (1999) 683 [hep-ph/9810328] [INSPIRE].
  26. [26]
    P.F. Harrison, D.H. Perkins and W.G. Scott, Tri-bimaximal mixing and the neutrino oscillation data, Phys. Lett. B 530 (2002) 167 [hep-ph/0202074] [INSPIRE].
  27. [27]
    G.L. Fogli and E. Lisi, Tests of three flavor mixing in long baseline neutrino oscillation experiments, Phys. Rev. D 54 (1996) 3667 [hep-ph/9604415] [INSPIRE].
  28. [28]
    H. Minakata, H. Sugiyama, O. Yasuda, K. Inoue and F. Suekane, Reactor measurement of theta(13) and its complementarity to long baseline experiments, Phys. Rev. D 68 (2003) 033017 [Erratum ibid. D 70 (2004) 059901] [hep-ph/0211111] [INSPIRE].
  29. [29]
    S.S. Chatterjee, P. Pasquini and J.W.F. Valle, Resolving the atmospheric octant by an improved measurement of the reactor angle, Phys. Rev. D 96 (2017) 011303 [arXiv:1703.03435] [INSPIRE].ADSGoogle Scholar
  30. [30]
    L.M. Cebola, D. Emmanuel-Costa and R.G. Felipe, Confronting predictive texture zeros in lepton mass matrices with current data, Phys. Rev. D 92 (2015) 025005 [arXiv:1504.06594] [INSPIRE].ADSGoogle Scholar
  31. [31]
    L.M. Cebola, D. Emmanuel-Costa and R.G. Felipe, Neutrino observables from predictive flavour patterns, Eur. Phys. J. C 76 (2016) 156 [arXiv:1601.06150] [INSPIRE].ADSCrossRefGoogle Scholar

Copyright information

© The Author(s) 2017

Authors and Affiliations

  • G. C. Branco
    • 1
    • 2
  • M. N. Rebelo
    • 1
    • 2
  • J. I. Silva-Marcos
    • 1
  1. 1.Departamento de Física and Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico (IST)Universidade de Lisboa (UL)LisboaPortugal
  2. 2.Theory DepartmentCERNGeneva 23Switzerland

Personalised recommendations