Journal of High Energy Physics

, 2016:120 | Cite as

BPS counting for knots and combinatorics on words

Open Access
Regular Article - Theoretical Physics

Abstract

We discuss relations between quantum BPS invariants defined in terms of a product decomposition of certain series, and difference equations (quantum A-polynomials) that annihilate such series. We construct combinatorial models whose structure is encoded in the form of such difference equations, and whose generating functions (Hilbert-Poincaré series) are solutions to those equations and reproduce generating series that encode BPS invariants. Furthermore, BPS invariants in question are expressed in terms of Lyndon words in an appropriate language, thereby relating counting of BPS states to the branch of mathematics referred to as combinatorics on words. We illustrate these results in the framework of colored extremal knot polynomials: among others we determine dual quantum extremal A-polynomials for various knots, present associated combinatorial models, find corresponding BPS invariants (extremal Labastida-Mariño-Ooguri-Vafa invariants) and discuss their integrality.

Keywords

Chern-Simons Theories Non-Commutative Geometry Topological Field Theories Topological Strings 

Supplementary material

13130_2016_5060_MOESM1_ESM.nb (102 kb)
ESM 1(NB 102 kb)

References

  1. [1]
    M. Reineke, Degenerate cohomological Hall algebra and quantized Donaldson-Thomas invariants for m-loop quivers, Doc. Math. 17 (2012) 1 [arXiv:1102.3978].ADSMathSciNetMATHGoogle Scholar
  2. [2]
    M. Lothaire, Combinatorics on Words, Encyclopedia of Mathematics and its Applications volume 17, Addison Wesley, Reading U.S.A. (1983).Google Scholar
  3. [3]
    M. Lothaire, Algebraic combinatorics on words, Encyclopedia of Mathematics and its Applications volume 90, Cambridge University Press, Cambridge U.K. (2002).Google Scholar
  4. [4]
    J. Berstel and D. Perrin, The origins of combinatorics on words, Eur. J. Comb. 28 (2007) 996.MathSciNetCrossRefMATHGoogle Scholar
  5. [5]
    R. Gopakumar and C. Vafa, M theory and topological strings. 1, hep-th/9809187 [INSPIRE].
  6. [6]
    R. Gopakumar and C. Vafa, M theory and topological strings. 2, hep-th/9812127 [INSPIRE].
  7. [7]
    M. Aganagic and C. Vafa, Mirror symmetry, D-branes and counting holomorphic discs, hep-th/0012041 [INSPIRE].
  8. [8]
    M. Aganagic, A. Klemm and C. Vafa, Disk instantons, mirror symmetry and the duality web, Z. Naturforsch. A 57 (2002) 1 [hep-th/0105045] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  9. [9]
    H. Ooguri and C. Vafa, Knot invariants and topological strings, Nucl. Phys. B 577 (2000) 419 [hep-th/9912123] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  10. [10]
    J.M.F. Labastida and M. Mariño, Polynomial invariants for torus knots and topological strings, Commun. Math. Phys. 217 (2001) 423 [hep-th/0004196] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  11. [11]
    J.M.F. Labastida, M. Marino and C. Vafa, Knots, links and branes at large N, JHEP 11 (2000) 007.ADSMathSciNetCrossRefMATHGoogle Scholar
  12. [12]
    M. Kontsevich, A.S. Schwarz and V. Vologodsky, Integrality of instanton numbers and p-adic B-model, Phys. Lett. B 637 (2006) 97 [hep-th/0603106] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  13. [13]
    V. Vologodsky, Integrality of instanton numbers, arXiv:0707.4617.
  14. [14]
    A. Schwarz and V. Vologodsky, Integrality theorems in the theory of topological strings, Nucl. Phys. B 821 (2009) 506.ADSMathSciNetCrossRefMATHGoogle Scholar
  15. [15]
    A. Schwarz, V. Vologodsky and J. Walcher, Framing the di-logarithm (over Z), Proc. Symp. Pure Math. 90 (2015) 113 [arXiv:1306.4298] [INSPIRE].MathSciNetCrossRefGoogle Scholar
  16. [16]
    M. Kontsevich and Y. Soibelman, Stability structures, motivic Donaldson-Thomas invariants and cluster transformations, arXiv:0811.2435 [INSPIRE].
  17. [17]
    D. Gaiotto, G.W. Moore and A. Neitzke, Four-dimensional wall-crossing via three-dimensional field theory, Commun. Math. Phys. 299 (2010) 163 [arXiv:0807.4723] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  18. [18]
    T. Dimofte and S. Gukov, Refined, motivic and quantum, Lett. Math. Phys. 91 (2010) 1 [arXiv:0904.1420] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  19. [19]
    M. Reineke, Cohomology of quiver moduli, functional equations, and integrality of Donaldson-Thomas type invariants, Comp. Math. 147 (2011) 943.MathSciNetCrossRefMATHGoogle Scholar
  20. [20]
    S. Gukov and M. Stošić, Homological algebra of knots and BPS states, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].MathSciNetCrossRefMATHGoogle Scholar
  21. [21]
    P. Wedrich, q-holonomic formulas for colored HOMFLY polynomials of 2-bridge links, arXiv:1410.3769 [INSPIRE].
  22. [22]
    S. Garoufalidis, P. Kucharski and P. Sulkowski, Knots, BPS states and algebraic curves, Commun. Math. Phys. 346 (2016) 75 [arXiv:1504.06327] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  23. [23]
    M. Aganagic and C. Vafa, Large-N duality, mirror symmetry and a Q-deformed A-polynomial for knots, arXiv:1204.4709 [INSPIRE].
  24. [24]
    H. Fuji, S. Gukov and P. Sulkowski, Super-A-polynomial for knots and BPS states, Nucl. Phys. B 867 (2013) 506 [arXiv:1205.1515] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  25. [25]
    S. Nawata, P. Ramadevi, Zodinmawia and X. Sun, Super-A-polynomials for twist knots, JHEP 11 (2012) 157 [arXiv:1209.1409] [INSPIRE].
  26. [26]
    H. Fuji, S. Gukov, M. Stosic and P. Sulkowski, 3d analogs of Argyres-Douglas theories and knot homologies, JHEP 01 (2013) 175 [arXiv:1209.1416] [INSPIRE].ADSCrossRefGoogle Scholar
  27. [27]
    S. Garoufalidis, A.D. Lauda and T.T.Q. Le, The colored HOMFLYPT function is q-holonomic, arXiv:1604.08502 [INSPIRE].
  28. [28]
    S. Gukov, S. Nawata, I. Saberi, M. Stošić and P. Sulkowski, Sequencing BPS Spectra, JHEP 03 (2016) 004 [arXiv:1512.07883] [INSPIRE].ADSMathSciNetCrossRefGoogle Scholar
  29. [29]
    L. Ng, Combinatorial knot contact homology and transverse knots, Adv. Math. 227 (2011) 2189.MathSciNetCrossRefMATHGoogle Scholar
  30. [30]
    S. Gukov and P. Sulkowski, A-polynomial, B-model and quantization, JHEP 02 (2012) 070 [arXiv:1108.0002] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  31. [31]
    P. Norbury, Quantum curves and topological recursion, Proc. Symp. Pure Math. 93 (2015) 41 [arXiv:1502.04394] [INSPIRE].Google Scholar
  32. [32]
    A. Schwarz, Quantum curves, Commun. Math. Phys. 338 (2015) 483 [arXiv:1401.1574] [INSPIRE].ADSMathSciNetCrossRefMATHGoogle Scholar
  33. [33]
    O. Dumitrescu and M. Mulase, Lectures on the topological recursion for Higgs bundles and quantum curves, arXiv:1509.09007 [INSPIRE].
  34. [34]
    M. Manabe and P. Sulkowski, Quantum curves and conformal field theory, arXiv:1512.05785 [INSPIRE].
  35. [35]
    V. Bouchard and B. Eynard, Reconstructing WKB from topological recursion, arXiv:1606.04498 [INSPIRE].
  36. [36]
    J. Fürlinger and J. Hofbauer, q-catalan numbers, J. Comb. Theory A 40 (1985) 248.MathSciNetCrossRefMATHGoogle Scholar
  37. [37]
    RISC Combinatorics group, A. Riese, qZeil.m, http://www.risc.jku.at/research/combinat/software/qZeil/.

Copyright information

© The Author(s) 2016

Authors and Affiliations

  1. 1.Faculty of PhysicsUniversity of WarsawWarsawPoland
  2. 2.Walter Burke Institute for Theoretical PhysicsCalifornia Institute of TechnologyPasadenaU.S.A.

Personalised recommendations