Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Universal hydrodynamic flow in holographic planar shock collisions
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Collision of localized shocks in AdS5 as a series expansion in transverse gradients

26 September 2022

Sebastian Waeber & Laurence G. Yaffe

Asymmetric shockwave collisions in AdS5

01 August 2019

Sebastian Waeber, Andreas Rabenstein, … Laurence G. Yaffe

Strong Shock in the Uniformly Expanding Universe with a Spherical Void

30 December 2020

G. S. Bisnovatyi-Kogan & S. A. Panafidina

Shock Propagation in the Hard Sphere Gas in Two Dimensions: Comparison Between Simulations and Hydrodynamics

16 June 2021

Jilmy P. Joy & R. Rajesh

Radiation-Mediated Shocks: Kinetic Processes and Transition to Collisionless Shocks

28 December 2018

E. Derishev

Holographic collisions in large D effective theory

14 February 2023

Raimon Luna & Mikel Sanchez-Garitaonandia

Self-Gravitational Shock Structures in Self-Gravitating, Super-Dense, Degenerate Quantum Plasmas

29 July 2020

M. Asaduzzaman & A. A. Mamun

On the Passage of a Shock Wave through a Layer of Charged Gas

01 May 2018

A. N. Golubyatnikov & S. D. Kovalevskaya

Cylindrical Shock Waves in Space Superthermal Fluids

12 November 2019

Hesham Gomaa Abdelwahed, Emad Kheder El-Shewy, … Noura Fakhry Abdo

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 20 November 2015

Universal hydrodynamic flow in holographic planar shock collisions

  • Paul M. Chesler1,
  • Niki Kilbertus2 &
  • Wilke van der Schee3 

Journal of High Energy Physics volume 2015, Article number: 135 (2015) Cite this article

  • 261 Accesses

  • 25 Citations

  • 2 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We study the collision of planar shock waves in AdS5 as a function of shock profile. In the dual field theory the shock waves describe planar sheets of energy whose collision results in the formation of a plasma which behaves hydrodynamically at late times. We find that the post-collision stress tensor near the light cone exhibits transient non-universal behavior which depends on both the shock width and the precise functional form of the shock profile. However, over a large range of shock widths, including those which yield qualitative different behavior near the future light cone, and for different shock profiles, we find universal behavior in the subsequent hydrodynamic evolution. Additionally, we compute the rapidity distribution of produced particles and find it to be well described by a Gaussian.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, From full stopping to transparency in a holographic model of heavy ion collisions, Phys. Rev. Lett. 111 (2013) 181601 [arXiv:1305.4919] [INSPIRE].

    Article  ADS  Google Scholar 

  2. P.M. Chesler and L.G. Yaffe, Numerical solution of gravitational dynamics in asymptotically anti-de Sitter spacetimes, JHEP 07 (2014) 086 [arXiv:1309.1439] [INSPIRE].

    Article  ADS  Google Scholar 

  3. S. Bhattacharyya, V.E. Hubeny, S. Minwalla and M. Rangamani, Nonlinear Fluid Dynamics from Gravity, JHEP 02 (2008) 045 [arXiv:0712.2456] [INSPIRE].

    Article  ADS  Google Scholar 

  4. R. Baier, P. Romatschke, D.T. Son, A.O. Starinets and M.A. Stephanov, Relativistic viscous hydrodynamics, conformal invariance and holography, JHEP 04 (2008) 100 [arXiv:0712.2451] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  5. P. Arnold, P. Romatschke and W. van der Schee, Absence of a local rest frame in far from equilibrium quantum matter, JHEP 10 (2014) 110 [arXiv:1408.2518] [INSPIRE].

    Article  ADS  Google Scholar 

  6. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    Article  ADS  Google Scholar 

  7. G. Policastro, D.T. Son and A.O. Starinets, The Shear viscosity of strongly coupled N = 4 supersymmetric Yang-Mills plasma, Phys. Rev. Lett. 87 (2001) 081601 [hep-th/0104066] [INSPIRE].

    Article  ADS  Google Scholar 

  8. S.S. Gubser, S.S. Pufu and A. Yarom, Entropy production in collisions of gravitational shock waves and of heavy ions, Phys. Rev. D 78 (2008) 066014 [arXiv:0805.1551] [INSPIRE].

    ADS  Google Scholar 

  9. D. Grumiller and P. Romatschke, On the collision of two shock waves in AdS 5, JHEP 08 (2008) 027 [arXiv:0803.3226] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  10. W. van der Schee, Gravitational collisions and the quark-gluon plasma, arXiv:1407.1849 [INSPIRE].

  11. J. Casalderrey-Solana, M.P. Heller, D. Mateos and W. van der Schee, Longitudinal Coherence in a Holographic Model of Asymmetric Collisions, Phys. Rev. Lett. 112 (2014) 221602 [arXiv:1312.2956] [INSPIRE].

    Article  ADS  Google Scholar 

  12. W. van der Schee, P. Romatschke and S. Pratt, Fully Dynamical Simulation of Central Nuclear Collisions, Phys. Rev. Lett. 111 (2013) 222302 [arXiv:1307.2539] [INSPIRE].

    Article  ADS  Google Scholar 

  13. W. van der Schee, Holographic thermalization with radial flow, Phys. Rev. D 87 (2013) 061901 [arXiv:1211.2218] [INSPIRE].

    ADS  Google Scholar 

  14. P.M. Chesler and L.G. Yaffe, Holography and off-center collisions of localized shock waves, JHEP 10 (2015) 070 [arXiv:1501.04644] [INSPIRE].

    Article  ADS  Google Scholar 

  15. P.M. Chesler and L.G. Yaffe, Holography and colliding gravitational shock waves in asymptotically AdS 5 spacetime, Phys. Rev. Lett. 106 (2011) 021601 [arXiv:1011.3562] [INSPIRE].

    Article  ADS  Google Scholar 

  16. F. Cooper and G. Frye, Comment on the Single Particle Distribution in the Hydrodynamic and Statistical Thermodynamic Models of Multiparticle Production, Phys. Rev. D 10 (1974) 186 [INSPIRE].

    ADS  Google Scholar 

  17. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/String Duality, Hot QCD and Heavy Ion Collisions, arXiv:1101.0618 [INSPIRE].

  18. J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    Article  MATH  MathSciNet  Google Scholar 

  19. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    MATH  MathSciNet  ADS  Google Scholar 

  20. S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett. B 428 (1998) 105 [hep-th/9802109] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  21. S.S. Gubser, S.S. Pufu and A. Yarom, Off-center collisions in AdS 5 with applications to multiplicity estimates in heavy-ion collisions, JHEP 11 (2009) 050 [arXiv:0902.4062] [INSPIRE].

    Article  ADS  Google Scholar 

  22. S. Lin and E. Shuryak, Grazing Collisions of Gravitational Shock Waves and Entropy Production in Heavy Ion Collision, Phys. Rev. D 79 (2009) 124015 [arXiv:0902.1508] [INSPIRE].

    ADS  Google Scholar 

  23. L.D. Landau, On the multiparticle production in high-energy collisions, Izv. Akad. Nauk Ser. Fiz. 17 (1953) 51 [INSPIRE].

    Google Scholar 

  24. C.-Y. Wong, Landau Hydrodynamics Revisited, Phys. Rev. C 78 (2008) 054902 [arXiv:0808.1294] [INSPIRE].

    ADS  Google Scholar 

  25. F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, The Color Glass Condensate, Ann. Rev. Nucl. Part. Sci. 60 (2010) 463 [arXiv:1002.0333] [INSPIRE].

    Article  ADS  Google Scholar 

  26. M. Luzum and P. Romatschke, Conformal Relativistic Viscous Hydrodynamics: Applications to RHIC results at \( \sqrt{s_{NN}}=200 \) GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. C 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].

  27. BRAHMS collaboration, I.G. Bearden et al., Charged meson rapidity distributions in central Au+Au collisions at \( \sqrt{s_{NN}}=200 \) -GeV, Phys. Rev. Lett. 94 (2005) 162301 [nucl-ex/0403050] [INSPIRE].

  28. P. Steinberg, Landau hydrodynamics and RHIC phenomena, Acta Phys. Hung. A 24 (2005) 51 [nucl-ex/0405022] [INSPIRE].

    Article  Google Scholar 

  29. P.M. Chesler, Colliding shockwaves and hydrodynamics in extreme conditions, arXiv:1506.02209 [INSPIRE].

  30. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Modeling Heavy Ion Collisions in AdS/CFT, JHEP 07 (2008) 100 [arXiv:0805.2927] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

  31. J.L. Albacete, Y.V. Kovchegov and A. Taliotis, Asymmetric Collision of Two Shock Waves in AdS 5, JHEP 05 (2009) 060 [arXiv:0902.3046] [INSPIRE].

    Article  MathSciNet  ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Author information

Authors and Affiliations

  1. Department of Physics, Harvard University, Cambridge, MA, 02138, U.S.A.

    Paul M. Chesler

  2. Institut für Theoretische Physik, Universität Regensburg, D-93040, Regensburg, Germany

    Niki Kilbertus

  3. Center for Theoretical Physics, MIT, Cambridge, MA, 02139, U.S.A.

    Wilke van der Schee

Authors
  1. Paul M. Chesler
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Niki Kilbertus
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Wilke van der Schee
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Paul M. Chesler.

Additional information

ArXiv ePrint: 1507.02548

Rights and permissions

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0), which permits use, duplication, adaptation, distribution, and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Chesler, P.M., Kilbertus, N. & van der Schee, W. Universal hydrodynamic flow in holographic planar shock collisions. J. High Energ. Phys. 2015, 135 (2015). https://doi.org/10.1007/JHEP11(2015)135

Download citation

  • Received: 09 September 2015

  • Accepted: 09 November 2015

  • Published: 20 November 2015

  • DOI: https://doi.org/10.1007/JHEP11(2015)135

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Quark-Gluon Plasma
  • Gauge-gravity correspondence
  • AdS-CFT Correspondence
  • Holography and quark-gluon plasmas
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.