Journal of High Energy Physics

, 2013:110 | Cite as

Dirac sigma models from gauging

  • Vladimir SalnikovEmail author
  • Thomas Strobl
Open Access


The G/G WZW model results from the WZW-model by a standard procedure of gauging. G/G WZW models are members of Dirac sigma models, which also contain twisted Poisson sigma models as other examples. We show how the general class of Dirac sigma models can be obtained from a gauging procedure adapted to Lie algebroids in the form of an equivariantly closed extension. The rigid gauge groups are generically infinite dimensional and a standard gauging procedure would give a likewise infinite number of 1-form gauge fields; the proposed construction yields the requested finite number of them.

Although physics terminology is used, the presentation is kept accessible also for a mathematical audience.


Gauge Symmetry Differential and Algebraic Geometry BRST Symmetry Sigma Models 


  1. [1]
    E. Witten, Non-Abelian bosonization in two-dimensions, Commun. Math. Phys. 92 (1984) 455 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  2. [2]
    J.M. Figueroa-O’Farrill and S. Stanciu, Equivariant cohomology and gauged bosonic σ-models, hep-th/9407149 [INSPIRE].
  3. [3]
    J.M. Figueroa-O’Farrill and N. Mohammedi, Gauging the Wess-Zumino term of a σ-model with boundary, JHEP 08 (2005) 086 [hep-th/0506049] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  4. [4]
    A. Alekseev and T. Strobl, Current algebras and differential geometry, JHEP 03 (2005) 035 [hep-th/0410183] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  5. [5]
    K. Gawȩdzki and A. Kupiainen, G/H conformal field theory from gauged WZW model, Phys. Lett. B 215 (1988) 119 [INSPIRE].ADSCrossRefGoogle Scholar
  6. [6]
    K. Gawȩdzki and A. Kupiainen, Coset construction from functional integrals, Nucl. Phys. B 320 (1989) 625 [INSPIRE].ADSCrossRefGoogle Scholar
  7. [7]
    K. Gawȩdzki, R.R. Suszek and K. Waldorf, Global gauge anomalies in two-dimensional bosonic σ-models, Commun. Math. Phys. 302 (2011) 513 [arXiv:1003.4154] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    A. Gerasimov, Localization in GWZW and Verlinde formula, hep-th/9305090 [INSPIRE].
  9. [9]
    N. Ikeda, Two-dimensional gravity and nonlinear gauge theory, Annals Phys. 235 (1994) 435 [hep-th/9312059] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  10. [10]
    P. Schaller and T. Strobl, Poisson structure induced (topological) field theories, Mod. Phys. Lett. A 9 (1994) 3129 [hep-th/9405110] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    M. Kontsevich, Deformation quantization of Poisson manifolds. 1, Lett. Math. Phys. 66 (2003) 157 [q-alg/9709040] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  12. [12]
    A.S. Cattaneo and G. Felder, A path integral approach to the Kontsevich quantization formula, Commun. Math. Phys. 212 (2000) 591 [math/9902090] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  13. [13]
    T. Klösch and T. Strobl, Classical and quantum gravity in (1 + 1)-dimensions. Part 1: a unifying approach, Class. Quant. Grav. 13 (1996) 965 [Erratum ibid. 14 (1997) 825] [gr-qc/9508020] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  14. [14]
    T. Klösch and T. Strobl, Classical and quantum gravity in (1 + 1)-dimensions. Part 2: the universal coverings, Class. Quant. Grav. 13 (1996) 2395 [gr-qc/9511081] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  15. [15]
    T. Klösch and T. Strobl, Classical and quantum gravity in (1 + 1)-dimensions. Part 3: solutions of arbitrary topology, Class. Quant. Grav. 14 (1997) 1689 [hep-th/9607226] [INSPIRE].ADSCrossRefzbMATHGoogle Scholar
  16. [16]
    C. Klimčík and T. Strobl, WZWPoisson manifolds, J. Geom. Phys. 43 (2002) 341 [math/0104189] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  17. [17]
    P. Ševera and A. Weinstein, Poisson geometry with a 3 form background, Prog. Theor. Phys. Suppl. 144 (2001) 145 [math.SG/0107133] [INSPIRE].ADSGoogle Scholar
  18. [18]
    J.-S. Park, Topological open p-branes, in Symplectic geometry and mirror symmetry, Seoul 2000, World Sci. Publishing, River Edge NJ U.S.A. (2001) [hep-th/0012141] [INSPIRE].Google Scholar
  19. [19]
    A. Kotov, P. Schaller and T. Strobl, Dirac σ-models, Commun. Math. Phys. 260 (2005) 455 [hep-th/0411112] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  20. [20]
    A. Cannas da Silva and A. Weinstein, Geometric models for noncommutative algebras, AMS Berkeley Mathematics Lecture Notes series, U.S.A. (1999).Google Scholar
  21. [21]
    K. Mackenzie, General theory of Lie groupoids and Lie algebroids, Cambridge U. Press, Cambridge U.K. (2005).CrossRefzbMATHGoogle Scholar
  22. [22]
    C. Mayer and T. Strobl, Lie algebroid Yang-Mills with matter fields, J. Geom. Phys. 59 (2009) 1613 [arXiv:0908.3161] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  23. [23]
    A. Kotov and T. Strobl, Generalizing geometryalgebroids and sigma models, in Handbook on pseudo-Riemannian geometry and supersymmetry, V. Cortes ed., European Mathematical Society, Switzerland (2010) [INSPIRE].Google Scholar
  24. [24]
    T. Strobl, Algebroid Yang-Mills theories, Phys. Rev. Lett. 93 (2004) 211601 [hep-th/0406215] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    C.L. Rogers, L algebras from multisymplectic geometry, Lett. Math. Phys. 100 (2012) 29 [arXiv:1005.2230] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  26. [26]
    A. Kotov and T. Strobl, Characteristic classes associated to Q-bundles, arXiv:0711.4106 [INSPIRE].
  27. [27]
    J. Kalkman, BRST model for equivariant cohomology and representatives for the equivariant Thom class, Commun. Math. Phys. 153 (1993) 447 [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  28. [28]
    J.A. De Azcárraga and J.M. Izquierdo, Lie groups, Lie algebras, cohomology and some applications in physics, Cambridge Monographs on Mathematical Physics, Cambridge U.K. (1995).Google Scholar
  29. [29]
    A. Vaintrob, Lie algebroids and homological vector fields, Usp. Mat. Nauk 52 (1997) 161 [Russ. Math. Surv. 52 (1997) 428].MathSciNetCrossRefGoogle Scholar
  30. [30]
    Y. Kosmann-Schwarzbach, Derived brackets, Lett. Math. Phys. 69 (2004) 61 [math.DG/0312524] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  31. [31]
    M. Grützmann, V. Salnikov and T. Strobl, New methods for gauging, in preparation.Google Scholar
  32. [32]
    T.J. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990) 631.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [33]
    V. Salnikov, Gauged sigma models and graded geometry, Ph.D. thesis, Univ. Claude Bernard Lyon 1, Lyon France (2012).Google Scholar
  34. [34]
    M. Bojowald, A. Kotov and T. Strobl, Lie algebroid morphisms, Poisson σ-models and off-shell closed gauge symmetries, J. Geom. Phys. 54 (2005) 400 [math.DG/0406445] [INSPIRE].MathSciNetADSCrossRefzbMATHGoogle Scholar
  35. [35]
    M. Henneaux and C. Teitelboim, Quantization of gauge systems, Princeton University Press, Priceton U.S.A. (1991) [INSPIRE].Google Scholar
  36. [36]
    U. Bruzzo, L. Cirio, P. Rossi and V. Rubtsov, Equivariant cohomology and localization for Lie algebroids, Funct. Anal. Appl. 43 (2009) 18 [Funkt. Anal. Pril. 43 (2009) 22] [math.DG/0506392].MathSciNetCrossRefzbMATHGoogle Scholar
  37. [37]
    U. Bruzzo and V. Rubtsov, Cohomology of skew-holomorphic Lie algebroids, Theor. Math. Phys. 165 (2010) 1596 [INSPIRE].CrossRefGoogle Scholar
  38. [38]
    U. Bruzzo and V. Rubtsov, On localization in holomorphic equivariant cohomology, Centr. Eur. J. Math. 10 (2012) 1442 [arXiv:0910.2019].MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© SISSA 2013

Authors and Affiliations

  1. 1.Laboratoire de Mathématiques de l’INSA de RouenAvenue de l’UniversitéSaint- Étienne-du-Rouvray cedexFrance
  2. 2.Institut Camille JordanUniversité Claude Bernard Lyon 1Villeurbanne cedexFrance

Personalised recommendations