Journal of High Energy Physics

, 2012:150 | Cite as

The identity string field and the sliver frame level expansion

Article

Abstract

We propose a modified version of the sliver-frame level expansion which gives a tool for analyzing singularities related to the identity string field. We apply this formalism to the newly discovered solutions of Masuda, Noumi, and Takahashi.

Keywords

Tachyon Condensation Bosonic Strings String Field Theory 

References

  1. [1]
    T. Masuda, T. Noumi and D. Takahashi, Constraints on a class of classical solutions in open string field theory, JHEP 10 (2012) 113 [arXiv:1207.6220] [INSPIRE].ADSCrossRefGoogle Scholar
  2. [2]
    M. Murata and M. Schnabl, On multibrane solutions in open string field theory, Prog. Theor. Phys. Suppl. 188 (2011) 50 [arXiv:1103.1382] [INSPIRE].ADSMATHCrossRefGoogle Scholar
  3. [3]
    M. Murata and M. Schnabl, Multibrane solutions in open string field theory, JHEP 07 (2012) 063 [arXiv:1112.0591] [INSPIRE].ADSCrossRefGoogle Scholar
  4. [4]
    T. Erler and C. Maccaferri, Connecting solutions in open string field theory with singular gauge transformations, JHEP 04 (2012) 107 [arXiv:1201.5119] [INSPIRE].ADSCrossRefGoogle Scholar
  5. [5]
    T. Okuda and T. Takayanagi, Ghost D-branes, JHEP 03 (2006) 062 [hep-th/0601024] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  6. [6]
    T. Erler and C. Maccaferri, Comments on lumps from RG flows, JHEP 11 (2011) 092 [arXiv:1105.6057] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  7. [7]
    D. Takahashi, The boundary state for a class of analytic solutions in open string field theory, JHEP 11 (2011) 054 [arXiv:1110.1443] [INSPIRE].ADSCrossRefGoogle Scholar
  8. [8]
    H. Hata and T. Kojita, Winding number in string field theory, JHEP 01 (2012) 088 [arXiv:1111.2389] [INSPIRE].ADSCrossRefGoogle Scholar
  9. [9]
    T. Erler and C. Maccaferri, The phantom term in open string field theory, JHEP 06 (2012) 084 [arXiv:1201.5122] [INSPIRE].ADSCrossRefGoogle Scholar
  10. [10]
    T. Erler and M. Schnabl, A simple analytic solution for tachyon condensation, JHEP 10 (2009) 066 [arXiv:0906.0979] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  11. [11]
    E.A. Arroyo, Generating Erler-Schnabl-type solution for tachyon vacuum in cubic superstring field theory, J. Phys. A 43 (2010) 445403 [arXiv:1004.3030] [INSPIRE].MathSciNetADSGoogle Scholar
  12. [12]
    S. Zeze, Regularization of identity based solution in string field theory, JHEP 10 (2010) 070 [arXiv:1008.1104] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  13. [13]
    E.A. Arroyo, Comments on regularization of identity based solutions in string field theory, JHEP 11 (2010) 135 [arXiv:1009.0198] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  14. [14]
    M. Kiermaier, Y. Okawa and P. Soler, Solutions from boundary condition changing operators in open string field theory, JHEP 03 (2011) 122 [arXiv:1009.6185] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  15. [15]
    M. Schnabl, Analytic solution for tachyon condensation in open string field theory, Adv. Theor. Math. Phys. 10 (2006) 433 [hep-th/0511286] [INSPIRE].MathSciNetMATHGoogle Scholar
  16. [16]
    Y. Okawa, Comments on Schnabls analytic solution for tachyon condensation in Wittens open string field theory, JHEP 04 (2006) 055 [hep-th/0603159] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  17. [17]
    T. Erler, Split string formalism and the closed string vacuum, JHEP 05 (2007) 083 [hep-th/0611200] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  18. [18]
    L. Rastelli and B. Zwiebach, Tachyon potentials, star products and universality, JHEP 09 (2001) 038 [hep-th/0006240] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  19. [19]
    M. Schnabl, Wedge states in string field theory, JHEP 01 (2003) 004 [hep-th/0201095] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  20. [20]
    Y. Okawa, L. Rastelli and B. Zwiebach, Analytic solutions for tachyon condensation with general projectors, hep-th/0611110 [INSPIRE].
  21. [21]
    L. Rastelli and B. Zwiebach, Solving open string field theory with special projectors, JHEP 01 (2008) 020 [hep-th/0606131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  22. [22]
    E. Aldo Arroyo, The tachyon potential in the sliver frame, JHEP 10 (2009) 056 [arXiv:0907.4939] [INSPIRE].ADSCrossRefGoogle Scholar
  23. [23]
    E.A. Arroyo, Cubic interaction term for Schnabls solution using Pade approximants, J. Phys. A 42 (2009) 375402 [arXiv:0905.2014] [INSPIRE].MathSciNetGoogle Scholar
  24. [24]
    T. Erler, Split string formalism and the closed string vacuum, II, JHEP 05 (2007) 084 [hep-th/0612050] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  25. [25]
    T. Erler, Exotic universal solutions in cubic superstring field theory, JHEP 04 (2011) 107 [arXiv:1009.1865] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  26. [26]
    I. Ellwood, The closed string tadpole in open string field theory, JHEP 08 (2008) 063 [arXiv:0804.1131] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  27. [27]
    I. Ellwood, Rolling to the tachyon vacuum in string field theory, JHEP 12 (2007) 028 [arXiv:0705.0013] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  28. [28]
    L. Rastelli, A. Sen and B. Zwiebach, String field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 353 [hep-th/0012251] [INSPIRE].MathSciNetGoogle Scholar
  29. [29]
    L. Rastelli, A. Sen and B. Zwiebach, Classical solutions in string field theory around the tachyon vacuum, Adv. Theor. Math. Phys. 5 (2002) 393 [hep-th/0102112] [INSPIRE].MathSciNetGoogle Scholar
  30. [30]
    L. Rastelli, A. Sen and B. Zwiebach, Boundary CFT construction of D-branes in vacuum string field theory, JHEP 11 (2001) 045 [hep-th/0105168] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar
  31. [31]
    T. Erler, A simple analytic solution for tachyon condensation, Theor. Math. Phys. 163 (2010) 705 [Teor. Mat. Fiz. 163 (2010) 366] [INSPIRE].MathSciNetMATHCrossRefGoogle Scholar
  32. [32]
    I. Kishimoto and Y. Michishita, Comments on solutions for nonsingular currents in open string field theories, Prog. Theor. Phys. 118 (2007) 347 [arXiv:0706.0409] [INSPIRE].MathSciNetADSMATHCrossRefGoogle Scholar
  33. [33]
    M. Kiermaier, Y. Okawa and B. Zwiebach, The boundary state from open string fields, arXiv:0810.1737 [INSPIRE].
  34. [34]
    I. Ellwood, Singular gauge transformations in string field theory, JHEP 05 (2009) 037 [arXiv:0903.0390] [INSPIRE].MathSciNetADSCrossRefGoogle Scholar

Copyright information

© SISSA, Trieste, Italy 2012

Authors and Affiliations

  1. 1.Institute of Physics of the ASCR, v.v.i.Prague 8Czech Republic

Personalised recommendations