Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

A mass for the dual axion

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 31 October 2024
  • Volume 2024, article number 253, (2024)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
A mass for the dual axion
Download PDF
  • Arthur Platschorre  ORCID: orcid.org/0000-0003-4106-62871 
  • 140 Accesses

  • Explore all metrics

A preprint version of the article is available at arXiv.

Abstract

In this article we study a modification of axion physics in which the dual axion acquires a mass. This mass explicitly breaks the shift symmetry of the dual axion. The potential breaking of this shift symmetry poses a dual axion quality problem. When the dual axion acquires a mass, the axion gets eaten and becomes the longitudinal degree of freedom of a massive vector field. In this phase, axion strings are screened and far-separated instanton configurations are exponentially suppressed. This confinement of instantons corresponds to the worldline action of a particle-like soliton traveling between the instantons analogous to Abrikosov/Nielsen-Oleson vortex solitons that stretch between confined magnetic monopoles in a superconductor. We calculate the cost of this additional worldline suppression and provide several models in which both the confined instantons and confining worldline are dynamical.

Article PDF

Download to read the full article text

Similar content being viewed by others

Non-standard axion electrodynamics and the dual Witten effect

Article Open access 23 January 2024

Zero modes of massive fermions delocalize from axion strings

Article Open access 08 May 2024

Axion decay constants away from the lamppost

Article Open access 14 April 2016
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  1. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  2. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

  3. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

  4. J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].

  5. L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].

  6. M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].

  7. D.J.E. Marsh, E.R.M. Tarrant, E.J. Copeland and P.G. Ferreira, Cosmology of Axions and Moduli: A Dynamical Systems Approach, Phys. Rev. D 86 (2012) 023508 [arXiv:1204.3632] [INSPIRE].

    Article  ADS  Google Scholar 

  8. D.J.E. Marsh, Axiverse extended: Vacuum destabilization, early dark energy, and cosmological collapse, Phys. Rev. D 83 (2011) 123526 [arXiv:1102.4851] [INSPIRE].

    Article  ADS  Google Scholar 

  9. P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  10. A. Arvanitaki et al., String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].

    Article  ADS  Google Scholar 

  11. T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].

  12. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].

    Article  ADS  Google Scholar 

  14. A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004 [arXiv:1812.02669] [INSPIRE].

  15. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  16. M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273 (1986) 109 [INSPIRE].

  17. F. Quevedo, Duality beyond global symmetries: The fate of the Bμν field, in the proceedings of the STRINGS 95: Future Perspectives in String Theory, Los Angeles, U.S.A., March 13–18 (1995) [hep-th/9506081] [INSPIRE].

  18. C.P. Burgess, G. Choi and F. Quevedo, UV and IR effects in axion quality control, JHEP 03 (2024) 051 [arXiv:2301.00549] [INSPIRE].

    Article  ADS  Google Scholar 

  19. G. Dvali, Strong-CP with and without gravity, arXiv:2209.14219 [INSPIRE].

  20. O. Sakhelashvili, Consistency of the dual formulation of axion solutions to the strong CP problem, Phys. Rev. D 105 (2022) 085020 [arXiv:2110.03386] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. G. Choi and J. Leedom, Implications of protecting the QCD axion in the dual description, JHEP 09 (2023) 175 [arXiv:2307.08733] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9 (1974) 2273 [INSPIRE].

  23. L.E. Ibanez, F. Marchesano and R. Rabadan, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].

    MathSciNet  Google Scholar 

  24. R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. I. Antoniadis, E. Kiritsis, J. Rizos and T.N. Tomaras, D-branes and the standard model, Nucl. Phys. B 660 (2003) 81 [hep-th/0210263] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. B. Heidenreich et al., Chern-Weil global symmetries and how quantum gravity avoids them, JHEP 11 (2021) 053 [arXiv:2012.00009] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. B. Heidenreich et al., Non-invertible global symmetries and completeness of the spectrum, JHEP 09 (2021) 203 [arXiv:2104.07036] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].

  29. C. Corianò, P.H. Frampton, N. Irges and A. Tatullo, Dark Matter with Stückelberg Axions, Front. in Phys. 7 (2019) 36 [arXiv:1811.05792] [INSPIRE].

    Article  ADS  Google Scholar 

  30. C. Corianò, M. Guzzi, G. Lazarides and A. Mariano, Cosmological Properties of a Gauged Axion, Phys. Rev. D 82 (2010) 065013 [arXiv:1005.5441] [INSPIRE].

    Article  ADS  Google Scholar 

  31. N. Irges, C. Corianò and S. Morelli, Stuckelberg Axions and the Effective Action of Anomalous Abelian Models 2. A SU(3)C × SU(2)W × U(1)Y × U(1)B model and its signature at the LHC, Nucl. Phys. B 789 (2008) 133 [hep-ph/0703127] [INSPIRE].

  32. C. Corianò and M. Guzzi, Axions from Intersecting Branes and Decoupled Chiral Fermions at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 87 [arXiv:0905.4462] [INSPIRE].

    Article  ADS  Google Scholar 

  33. C. Corianò, M. Guzzi and A. Mariano, Gauged Axions and their QCD Interactions, AIP Conf. Proc. 1317 (2010) 177 [arXiv:1009.5450] [INSPIRE].

    Article  ADS  Google Scholar 

  34. C. Corianò, M. Guzzi and S. Morelli, Unitarity Bounds for Gauged Axionic Interactions and the Green-Schwarz Mechanism, Eur. Phys. J. C 55 (2008) 629 [arXiv:0801.2949] [INSPIRE].

    Article  ADS  Google Scholar 

  35. C. Corianò, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys. B 746 (2006) 77 [hep-ph/0510332] [INSPIRE].

  36. J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].

    Article  ADS  Google Scholar 

  37. J.A. Dror, R. Lasenby and M. Pospelov, Light vectors coupled to bosonic currents, Phys. Rev. D 99 (2019) 055016 [arXiv:1811.00595] [INSPIRE].

    Article  ADS  Google Scholar 

  38. J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].

    Article  ADS  Google Scholar 

  39. G. Shiu, W. Staessens and F. Ye, Widening the Axion Window via Kinetic and Stückelberg Mixings, Phys. Rev. Lett. 115 (2015) 181601 [arXiv:1503.01015] [INSPIRE].

    Article  ADS  Google Scholar 

  40. G. Shiu, W. Staessens and F. Ye, Large Field Inflation from Axion Mixing, JHEP 06 (2015) 026 [arXiv:1503.02965] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. K. Choi, C.S. Shin and S. Yun, Axion scales and couplings with Stückelberg mixing, JHEP 12 (2019) 033 [arXiv:1909.11685] [INSPIRE].

    Article  ADS  Google Scholar 

  42. M. Berg, E. Pajer and S. Sjors, Dante’s Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].

    Article  ADS  Google Scholar 

  43. K. Fraser and M. Reece, Axion Periodicity and Coupling Quantization in the Presence of Mixing, JHEP 05 (2020) 066 [arXiv:1910.11349] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE].

  45. G. Aldazabal, L.E. Ibanez and A.M. Uranga, Gauging away the strong CP problem, JHEP 03 (2004) 065 [hep-ph/0205250] [INSPIRE].

  46. D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. T.D. Brennan and C. Cordova, Axions, higher-groups, and emergent symmetry, JHEP 02 (2022) 145 [arXiv:2011.09600] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. Y. Choi, H.T. Lam and S.-H. Shao, Non-invertible Gauss law and axions, JHEP 09 (2023) 067 [arXiv:2212.04499] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  49. B. Heidenreich, J. McNamara and M. Reece, Non-standard axion electrodynamics and the dual Witten effect, JHEP 01 (2024) 120 [arXiv:2309.07951] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  50. M. Reece, Photon Masses in the Landscape and the Swampland, JHEP 07 (2019) 181 [arXiv:1808.09966] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  51. S. Cecotti, S. Ferrara and L. Girardello, Massive Vector Multiplets From Superstrings, Nucl. Phys. B 294 (1987) 537 [INSPIRE].

  52. S.M. Kuzenko and K. Turner, Effective actions for dual massive (super) p-forms, JHEP 01 (2021) 040 [arXiv:2009.08263] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  53. P.K. Townsend, Classical properties of antisymmetric tensor gauge fields, in the proceedings of the 18th Winter School of Theoretical Physics: Gauge Theories of Fundamental Interactions — Status and Prospects, Karpacz, Poland, February 18 – March 18 (1981) [INSPIRE].

  54. A. Hell, On the duality of massive Kalb-Ramond and Proca fields, JCAP 01 (2022) 056 [arXiv:2109.05030] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  55. A. Smailagic and E. Spallucci, The dual phases of massless / massive Kalb-Ramond fields: Letter to the editor, J. Phys. A 34 (2001) L435 [hep-th/0106173] [INSPIRE].

    Article  ADS  Google Scholar 

  56. C. Capanelli, L. Jenks, E.W. Kolb and E. McDonough, Cosmological implications of Kalb-Ramond-like particles, JHEP 06 (2024) 075 [arXiv:2309.02485] [INSPIRE].

    Article  MathSciNet  Google Scholar 

  57. S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  58. V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  59. T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D 31 (1985) 3052 [INSPIRE].

  60. M. Sakellariadou, Gravitational waves emitted from infinite strings, Phys. Rev. D 42 (1990) 354 [Erratum ibid. 43 (1991) 4150] [INSPIRE].

  61. T.W.B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67 (1980) 183 [INSPIRE].

  62. Y.B. Zeldovich, Cosmological fluctuations produced near a singularity, Mon. Not. Roy. Astron. Soc. 192 (1980) 663 [INSPIRE].

  63. A. Vilenkin, Cosmological Density Fluctuations Produced by Vacuum Strings, Phys. Rev. Lett. 46 (1981) 1169 [Erratum ibid. 46 (1981) 1496] [INSPIRE].

  64. E. Witten, Superconducting Strings, Nucl. Phys. B 249 (1985) 557 [INSPIRE].

  65. J. March-Russell and H. Tillim, Axiverse Strings, arXiv:2109.14637 [INSPIRE].

  66. A.A. Abrikosov, On the Magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [INSPIRE].

  67. H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].

  68. A. Hook and J. Huang, A Mass for the Dual Photon, arXiv:2210.00015 [INSPIRE].

  69. V.L. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems, Sov. Phys. JETP 32 (1971) 493 [INSPIRE].

  70. J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C 7 (1974) 1046 [INSPIRE].

  71. C.G. Callan Jr., R.F. Dashen and D.J. Gross, The Structure of the Gauge Theory Vacuum, Phys. Lett. B 63 (1976) 334 [INSPIRE].

  72. C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a Theory of the Strong Interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].

  73. G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. 18 (1978) 2199] [INSPIRE].

  74. C.-K. Lee and W.A. Bardeen, Interaction of Massless Fermions with Instantons, Nucl. Phys. B 153 (1979) 210 [INSPIRE].

  75. A.M. Polyakov and A.A. Belavin, Metastable States of Two-Dimensional Isotropic Ferromagnets, JETP Lett. 22 (1975) 245 [INSPIRE].

  76. L.D. Faddeev, Quantization of Solitons, in 18th International Conference on High-Energy Physics, Tbilisi, Georgia, 15–21 July (1976).

  77. L.D. Faddeev and A.J. Niemi, Knots and particles, Nature 387 (1997) 58 [hep-th/9610193] [INSPIRE].

    Article  ADS  Google Scholar 

  78. P. Nikolić, Instanton confinement-deconfinement transitions: Stability of pseudogap phases and topological order, Phys. Rev. B 109 (2024) 165132 [arXiv:2309.14424] [INSPIRE].

    Article  ADS  Google Scholar 

  79. D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D 3 (1971) 880 [INSPIRE].

  80. E. Cartan, La topologie des espaces représentatifs des groupes de Lie, Enseign. Math. 35 (1936) 177.

  81. J. Preskill and A. Vilenkin, Decay of metastable topological defects, Phys. Rev. D 47 (1993) 2324 [hep-ph/9209210] [INSPIRE].

  82. D. Tong, Monopoles in the higgs phase, Phys. Rev. D 69 (2004) 065003 [hep-th/0307302] [INSPIRE].

    Article  ADS  Google Scholar 

  83. M. Shifman and A. Yung, NonAbelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  84. G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].

  85. A.M. Polyakov, Particle Spectrum in Quantum Field Theory, JETP Lett. 20 (1974) 194 [INSPIRE].

  86. M. Hindmarsh and T.W.B. Kibble, Monopoles on strings, Phys. Rev. Lett. 55 (1985) 2398 [INSPIRE].

  87. A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].

  88. C. Csaki and H. Murayama, Instantons in partially broken gauge groups, Nucl. Phys. B 532 (1998) 498 [hep-th/9804061] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  89. I. Affleck, On Constrained Instantons, Nucl. Phys. B 191 (1981) 429 [INSPIRE].

  90. G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964) 1252 [INSPIRE].

  91. N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press (2004) [https://doi.org/10.1017/CBO9780511617034] [INSPIRE].

  92. M. Eto et al., Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  93. R. Jackiw, Charge and Mass Spectrum of Quantum Solitons, Conf. Proc. C 750926 (1975) 377 [INSPIRE].

  94. F. Bruckmann, Monopoles from instantons, in the proceedings of the NATO Advanced Research Workshop on Confinement, Topology, and other Nonperturbative Aspects of QCD, Stara Lesna, Slovakia, January 21–27 (2002) [hep-th/0204241] [INSPIRE].

  95. O. Jahn, Instantons and monopoles in general Abelian gauges, J. Phys. A 33 (2000) 2997 [hep-th/9909004] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  96. J.J. Fan, K. Fraser, M. Reece and J. Stout, Axion Mass from Magnetic Monopole Loops, Phys. Rev. Lett. 127 (2021) 131602 [arXiv:2105.09950] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  97. E.R.C. Abraham and P.K. Townsend, More on Q kinks: A (1+1)-dimensional analog of dyons, Phys. Lett. B 295 (1992) 225 [INSPIRE].

  98. A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  99. M. Eto, M. Nitta, K. Ohashi and D. Tong, Skyrmions from instantons inside domain walls, Phys. Rev. Lett. 95 (2005) 252003 [hep-th/0508130] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  100. M. Nitta, Incarnations of Instantons, Nucl. Phys. B 885 (2014) 493 [arXiv:1311.2718] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  101. M. Nitta, Instantons confined by monopole strings, Phys. Rev. D 87 (2013) 066008 [arXiv:1301.3268] [INSPIRE].

    Article  ADS  Google Scholar 

  102. M. Nitta, Relations among topological solitons, Phys. Rev. D 105 (2022) 105006 [arXiv:2202.03929] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  103. R.C. Brower, K.N. Orginos and C.-I. Tan, Magnetic monopole loop for the Yang-Mills instanton, Phys. Rev. D 55 (1997) 6313 [hep-th/9610101] [INSPIRE].

    Article  ADS  Google Scholar 

  104. M.F. Atiyah and I.M. Singer, The index of elliptic operators on compact manifolds, Bull. Am. Math. Soc. 69 (1969) 422 [INSPIRE].

  105. T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].

  106. Y. Choi, M. Forslund, H.T. Lam and S.-H. Shao, Quantization of Axion-Gauge Couplings and Non-Invertible Higher Symmetries, Phys. Rev. Lett. 132 (2024) 121601 [arXiv:2309.03937] [INSPIRE].

    Article  ADS  Google Scholar 

  107. M. Reece, Axion-gauge coupling quantization with a twist, JHEP 10 (2023) 116 [arXiv:2309.03939] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  108. C. Alexandrou et al., Ruling Out the Massless Up-Quark Solution to the Strong CP Problem by Computing the Topological Mass Contribution with Lattice QCD, Phys. Rev. Lett. 125 (2020) 232001 [arXiv:2002.07802] [INSPIRE].

    Article  ADS  Google Scholar 

  109. M. Dine, P. Draper and G. Festuccia, Instanton Effects in Three Flavor QCD, Phys. Rev. D 92 (2015) 054004 [arXiv:1410.8505] [INSPIRE].

    Article  ADS  Google Scholar 

  110. F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].

  111. E. Izaguirre, T. Lin and B. Shuve, Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes, Phys. Rev. Lett. 118 (2017) 111802 [arXiv:1611.09355] [INSPIRE].

    Article  ADS  Google Scholar 

  112. N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [hep-th/9407087] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  113. N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Prateek Agrawal, Junwu Huang, Ethan Carragher, Matthew Reece and especially Mario Reig for helpful discussions. I would also like to thank the referee for useful comments and suggestions. Any errors are my own. This paper was inspired by analogous considerations of a dual photon mass in the recent paper [68]. Arthur Platschorre is supported by a STFC Studenship No. 2397217 and Cultuurfondsbeurs No. 40038041 made possible by the Pieter Beijer fonds and the Data-Piet fonds.

Author information

Authors and Affiliations

  1. Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, U.K.

    Arthur Platschorre

Authors
  1. Arthur Platschorre
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Arthur Platschorre.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2405.14931

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Platschorre, A. A mass for the dual axion. J. High Energ. Phys. 2024, 253 (2024). https://doi.org/10.1007/JHEP10(2024)253

Download citation

  • Received: 03 July 2024

  • Revised: 18 September 2024

  • Accepted: 13 October 2024

  • Published: 31 October 2024

  • DOI: https://doi.org/10.1007/JHEP10(2024)253

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Axions and ALPs
  • Duality in Gauge Field Theories
  • Solitons Monopoles and Instantons
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature