Abstract
In this article we study a modification of axion physics in which the dual axion acquires a mass. This mass explicitly breaks the shift symmetry of the dual axion. The potential breaking of this shift symmetry poses a dual axion quality problem. When the dual axion acquires a mass, the axion gets eaten and becomes the longitudinal degree of freedom of a massive vector field. In this phase, axion strings are screened and far-separated instanton configurations are exponentially suppressed. This confinement of instantons corresponds to the worldline action of a particle-like soliton traveling between the instantons analogous to Abrikosov/Nielsen-Oleson vortex solitons that stretch between confined magnetic monopoles in a superconductor. We calculate the cost of this additional worldline suppression and provide several models in which both the confined instantons and confining worldline are dynamical.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].
F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].
S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].
J. Preskill, M.B. Wise and F. Wilczek, Cosmology of the Invisible Axion, Phys. Lett. B 120 (1983) 127 [INSPIRE].
L.F. Abbott and P. Sikivie, A Cosmological Bound on the Invisible Axion, Phys. Lett. B 120 (1983) 133 [INSPIRE].
M. Dine and W. Fischler, The Not So Harmless Axion, Phys. Lett. B 120 (1983) 137 [INSPIRE].
D.J.E. Marsh, E.R.M. Tarrant, E.J. Copeland and P.G. Ferreira, Cosmology of Axions and Moduli: A Dynamical Systems Approach, Phys. Rev. D 86 (2012) 023508 [arXiv:1204.3632] [INSPIRE].
D.J.E. Marsh, Axiverse extended: Vacuum destabilization, early dark energy, and cosmological collapse, Phys. Rev. D 83 (2011) 123526 [arXiv:1102.4851] [INSPIRE].
P. Svrcek and E. Witten, Axions In String Theory, JHEP 06 (2006) 051 [hep-th/0605206] [INSPIRE].
A. Arvanitaki et al., String Axiverse, Phys. Rev. D 81 (2010) 123530 [arXiv:0905.4720] [INSPIRE].
T. Banks and L.J. Dixon, Constraints on String Vacua with Space-Time Supersymmetry, Nucl. Phys. B 307 (1988) 93 [INSPIRE].
R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].
T. Banks and N. Seiberg, Symmetries and Strings in Field Theory and Gravity, Phys. Rev. D 83 (2011) 084019 [arXiv:1011.5120] [INSPIRE].
A. Hook, TASI Lectures on the Strong CP Problem and Axions, PoS TASI2018 (2019) 004 [arXiv:1812.02669] [INSPIRE].
M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].
M. Dine and N. Seiberg, String Theory and the Strong CP Problem, Nucl. Phys. B 273 (1986) 109 [INSPIRE].
F. Quevedo, Duality beyond global symmetries: The fate of the Bμν field, in the proceedings of the STRINGS 95: Future Perspectives in String Theory, Los Angeles, U.S.A., March 13–18 (1995) [hep-th/9506081] [INSPIRE].
C.P. Burgess, G. Choi and F. Quevedo, UV and IR effects in axion quality control, JHEP 03 (2024) 051 [arXiv:2301.00549] [INSPIRE].
G. Dvali, Strong-CP with and without gravity, arXiv:2209.14219 [INSPIRE].
O. Sakhelashvili, Consistency of the dual formulation of axion solutions to the strong CP problem, Phys. Rev. D 105 (2022) 085020 [arXiv:2110.03386] [INSPIRE].
G. Choi and J. Leedom, Implications of protecting the QCD axion in the dual description, JHEP 09 (2023) 175 [arXiv:2307.08733] [INSPIRE].
M. Kalb and P. Ramond, Classical direct interstring action, Phys. Rev. D 9 (1974) 2273 [INSPIRE].
L.E. Ibanez, F. Marchesano and R. Rabadan, Getting just the standard model at intersecting branes, JHEP 11 (2001) 002 [hep-th/0105155] [INSPIRE].
R. Blumenhagen, B. Kors, D. Lust and S. Stieberger, Four-dimensional String Compactifications with D-Branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1 [hep-th/0610327] [INSPIRE].
I. Antoniadis, E. Kiritsis, J. Rizos and T.N. Tomaras, D-branes and the standard model, Nucl. Phys. B 660 (2003) 81 [hep-th/0210263] [INSPIRE].
B. Heidenreich et al., Chern-Weil global symmetries and how quantum gravity avoids them, JHEP 11 (2021) 053 [arXiv:2012.00009] [INSPIRE].
B. Heidenreich et al., Non-invertible global symmetries and completeness of the spectrum, JHEP 09 (2021) 203 [arXiv:2104.07036] [INSPIRE].
M.B. Green and J.H. Schwarz, Anomaly Cancellation in Supersymmetric D = 10 Gauge Theory and Superstring Theory, Phys. Lett. B 149 (1984) 117 [INSPIRE].
C. Corianò, P.H. Frampton, N. Irges and A. Tatullo, Dark Matter with Stückelberg Axions, Front. in Phys. 7 (2019) 36 [arXiv:1811.05792] [INSPIRE].
C. Corianò, M. Guzzi, G. Lazarides and A. Mariano, Cosmological Properties of a Gauged Axion, Phys. Rev. D 82 (2010) 065013 [arXiv:1005.5441] [INSPIRE].
N. Irges, C. Corianò and S. Morelli, Stuckelberg Axions and the Effective Action of Anomalous Abelian Models 2. A SU(3)C × SU(2)W × U(1)Y × U(1)B model and its signature at the LHC, Nucl. Phys. B 789 (2008) 133 [hep-ph/0703127] [INSPIRE].
C. Corianò and M. Guzzi, Axions from Intersecting Branes and Decoupled Chiral Fermions at the Large Hadron Collider, Nucl. Phys. B 826 (2010) 87 [arXiv:0905.4462] [INSPIRE].
C. Corianò, M. Guzzi and A. Mariano, Gauged Axions and their QCD Interactions, AIP Conf. Proc. 1317 (2010) 177 [arXiv:1009.5450] [INSPIRE].
C. Corianò, M. Guzzi and S. Morelli, Unitarity Bounds for Gauged Axionic Interactions and the Green-Schwarz Mechanism, Eur. Phys. J. C 55 (2008) 629 [arXiv:0801.2949] [INSPIRE].
C. Corianò, N. Irges and E. Kiritsis, On the effective theory of low scale orientifold string vacua, Nucl. Phys. B 746 (2006) 77 [hep-ph/0510332] [INSPIRE].
J.A. Dror, R. Lasenby and M. Pospelov, Dark forces coupled to nonconserved currents, Phys. Rev. D 96 (2017) 075036 [arXiv:1707.01503] [INSPIRE].
J.A. Dror, R. Lasenby and M. Pospelov, Light vectors coupled to bosonic currents, Phys. Rev. D 99 (2019) 055016 [arXiv:1811.00595] [INSPIRE].
J.A. Dror, R. Lasenby and M. Pospelov, New constraints on light vectors coupled to anomalous currents, Phys. Rev. Lett. 119 (2017) 141803 [arXiv:1705.06726] [INSPIRE].
G. Shiu, W. Staessens and F. Ye, Widening the Axion Window via Kinetic and Stückelberg Mixings, Phys. Rev. Lett. 115 (2015) 181601 [arXiv:1503.01015] [INSPIRE].
G. Shiu, W. Staessens and F. Ye, Large Field Inflation from Axion Mixing, JHEP 06 (2015) 026 [arXiv:1503.02965] [INSPIRE].
K. Choi, C.S. Shin and S. Yun, Axion scales and couplings with Stückelberg mixing, JHEP 12 (2019) 033 [arXiv:1909.11685] [INSPIRE].
M. Berg, E. Pajer and S. Sjors, Dante’s Inferno, Phys. Rev. D 81 (2010) 103535 [arXiv:0912.1341] [INSPIRE].
K. Fraser and M. Reece, Axion Periodicity and Coupling Quantization in the Presence of Mixing, JHEP 05 (2020) 066 [arXiv:1910.11349] [INSPIRE].
H.-C. Cheng and D.E. Kaplan, Axions and a gauged Peccei-Quinn symmetry, hep-ph/0103346 [INSPIRE].
G. Aldazabal, L.E. Ibanez and A.M. Uranga, Gauging away the strong CP problem, JHEP 03 (2004) 065 [hep-ph/0205250] [INSPIRE].
D. Gaiotto, A. Kapustin, N. Seiberg and B. Willett, Generalized Global Symmetries, JHEP 02 (2015) 172 [arXiv:1412.5148] [INSPIRE].
T.D. Brennan and C. Cordova, Axions, higher-groups, and emergent symmetry, JHEP 02 (2022) 145 [arXiv:2011.09600] [INSPIRE].
Y. Choi, H.T. Lam and S.-H. Shao, Non-invertible Gauss law and axions, JHEP 09 (2023) 067 [arXiv:2212.04499] [INSPIRE].
B. Heidenreich, J. McNamara and M. Reece, Non-standard axion electrodynamics and the dual Witten effect, JHEP 01 (2024) 120 [arXiv:2309.07951] [INSPIRE].
M. Reece, Photon Masses in the Landscape and the Swampland, JHEP 07 (2019) 181 [arXiv:1808.09966] [INSPIRE].
S. Cecotti, S. Ferrara and L. Girardello, Massive Vector Multiplets From Superstrings, Nucl. Phys. B 294 (1987) 537 [INSPIRE].
S.M. Kuzenko and K. Turner, Effective actions for dual massive (super) p-forms, JHEP 01 (2021) 040 [arXiv:2009.08263] [INSPIRE].
P.K. Townsend, Classical properties of antisymmetric tensor gauge fields, in the proceedings of the 18th Winter School of Theoretical Physics: Gauge Theories of Fundamental Interactions — Status and Prospects, Karpacz, Poland, February 18 – March 18 (1981) [INSPIRE].
A. Hell, On the duality of massive Kalb-Ramond and Proca fields, JCAP 01 (2022) 056 [arXiv:2109.05030] [INSPIRE].
A. Smailagic and E. Spallucci, The dual phases of massless / massive Kalb-Ramond fields: Letter to the editor, J. Phys. A 34 (2001) L435 [hep-th/0106173] [INSPIRE].
C. Capanelli, L. Jenks, E.W. Kolb and E. McDonough, Cosmological implications of Kalb-Ramond-like particles, JHEP 06 (2024) 075 [arXiv:2309.02485] [INSPIRE].
S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].
V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058] [INSPIRE].
T. Vachaspati and A. Vilenkin, Gravitational Radiation from Cosmic Strings, Phys. Rev. D 31 (1985) 3052 [INSPIRE].
M. Sakellariadou, Gravitational waves emitted from infinite strings, Phys. Rev. D 42 (1990) 354 [Erratum ibid. 43 (1991) 4150] [INSPIRE].
T.W.B. Kibble, Some Implications of a Cosmological Phase Transition, Phys. Rept. 67 (1980) 183 [INSPIRE].
Y.B. Zeldovich, Cosmological fluctuations produced near a singularity, Mon. Not. Roy. Astron. Soc. 192 (1980) 663 [INSPIRE].
A. Vilenkin, Cosmological Density Fluctuations Produced by Vacuum Strings, Phys. Rev. Lett. 46 (1981) 1169 [Erratum ibid. 46 (1981) 1496] [INSPIRE].
E. Witten, Superconducting Strings, Nucl. Phys. B 249 (1985) 557 [INSPIRE].
J. March-Russell and H. Tillim, Axiverse Strings, arXiv:2109.14637 [INSPIRE].
A.A. Abrikosov, On the Magnetic properties of superconductors of the second group, Sov. Phys. JETP 5 (1957) 1174 [INSPIRE].
H.B. Nielsen and P. Olesen, Vortex Line Models for Dual Strings, Nucl. Phys. B 61 (1973) 45 [INSPIRE].
A. Hook and J. Huang, A Mass for the Dual Photon, arXiv:2210.00015 [INSPIRE].
V.L. Berezinsky, Destruction of long range order in one-dimensional and two-dimensional systems having a continuous symmetry group. I. Classical systems, Sov. Phys. JETP 32 (1971) 493 [INSPIRE].
J.M. Kosterlitz, The critical properties of the two-dimensional xy model, J. Phys. C 7 (1974) 1046 [INSPIRE].
C.G. Callan Jr., R.F. Dashen and D.J. Gross, The Structure of the Gauge Theory Vacuum, Phys. Lett. B 63 (1976) 334 [INSPIRE].
C.G. Callan Jr., R.F. Dashen and D.J. Gross, Toward a Theory of the Strong Interactions, Phys. Rev. D 17 (1978) 2717 [INSPIRE].
G. ’t Hooft, Computation of the Quantum Effects Due to a Four-Dimensional Pseudoparticle, Phys. Rev. D 14 (1976) 3432 [Erratum ibid. 18 (1978) 2199] [INSPIRE].
C.-K. Lee and W.A. Bardeen, Interaction of Massless Fermions with Instantons, Nucl. Phys. B 153 (1979) 210 [INSPIRE].
A.M. Polyakov and A.A. Belavin, Metastable States of Two-Dimensional Isotropic Ferromagnets, JETP Lett. 22 (1975) 245 [INSPIRE].
L.D. Faddeev, Quantization of Solitons, in 18th International Conference on High-Energy Physics, Tbilisi, Georgia, 15–21 July (1976).
L.D. Faddeev and A.J. Niemi, Knots and particles, Nature 387 (1997) 58 [hep-th/9610193] [INSPIRE].
P. Nikolić, Instanton confinement-deconfinement transitions: Stability of pseudogap phases and topological order, Phys. Rev. B 109 (2024) 165132 [arXiv:2309.14424] [INSPIRE].
D. Zwanziger, Local Lagrangian quantum field theory of electric and magnetic charges, Phys. Rev. D 3 (1971) 880 [INSPIRE].
E. Cartan, La topologie des espaces représentatifs des groupes de Lie, Enseign. Math. 35 (1936) 177.
J. Preskill and A. Vilenkin, Decay of metastable topological defects, Phys. Rev. D 47 (1993) 2324 [hep-ph/9209210] [INSPIRE].
D. Tong, Monopoles in the higgs phase, Phys. Rev. D 69 (2004) 065003 [hep-th/0307302] [INSPIRE].
M. Shifman and A. Yung, NonAbelian string junctions as confined monopoles, Phys. Rev. D 70 (2004) 045004 [hep-th/0403149] [INSPIRE].
G. ’t Hooft, Magnetic Monopoles in Unified Gauge Theories, Nucl. Phys. B 79 (1974) 276 [INSPIRE].
A.M. Polyakov, Particle Spectrum in Quantum Field Theory, JETP Lett. 20 (1974) 194 [INSPIRE].
M. Hindmarsh and T.W.B. Kibble, Monopoles on strings, Phys. Rev. Lett. 55 (1985) 2398 [INSPIRE].
A.M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120 (1977) 429 [INSPIRE].
C. Csaki and H. Murayama, Instantons in partially broken gauge groups, Nucl. Phys. B 532 (1998) 498 [hep-th/9804061] [INSPIRE].
I. Affleck, On Constrained Instantons, Nucl. Phys. B 191 (1981) 429 [INSPIRE].
G.H. Derrick, Comments on nonlinear wave equations as models for elementary particles, J. Math. Phys. 5 (1964) 1252 [INSPIRE].
N.S. Manton and P. Sutcliffe, Topological solitons, Cambridge University Press (2004) [https://doi.org/10.1017/CBO9780511617034] [INSPIRE].
M. Eto et al., Instantons in the Higgs phase, Phys. Rev. D 72 (2005) 025011 [hep-th/0412048] [INSPIRE].
R. Jackiw, Charge and Mass Spectrum of Quantum Solitons, Conf. Proc. C 750926 (1975) 377 [INSPIRE].
F. Bruckmann, Monopoles from instantons, in the proceedings of the NATO Advanced Research Workshop on Confinement, Topology, and other Nonperturbative Aspects of QCD, Stara Lesna, Slovakia, January 21–27 (2002) [hep-th/0204241] [INSPIRE].
O. Jahn, Instantons and monopoles in general Abelian gauges, J. Phys. A 33 (2000) 2997 [hep-th/9909004] [INSPIRE].
J.J. Fan, K. Fraser, M. Reece and J. Stout, Axion Mass from Magnetic Monopole Loops, Phys. Rev. Lett. 127 (2021) 131602 [arXiv:2105.09950] [INSPIRE].
E.R.C. Abraham and P.K. Townsend, More on Q kinks: A (1+1)-dimensional analog of dyons, Phys. Lett. B 295 (1992) 225 [INSPIRE].
A. Hanany and D. Tong, Vortex strings and four-dimensional gauge dynamics, JHEP 04 (2004) 066 [hep-th/0403158] [INSPIRE].
M. Eto, M. Nitta, K. Ohashi and D. Tong, Skyrmions from instantons inside domain walls, Phys. Rev. Lett. 95 (2005) 252003 [hep-th/0508130] [INSPIRE].
M. Nitta, Incarnations of Instantons, Nucl. Phys. B 885 (2014) 493 [arXiv:1311.2718] [INSPIRE].
M. Nitta, Instantons confined by monopole strings, Phys. Rev. D 87 (2013) 066008 [arXiv:1301.3268] [INSPIRE].
M. Nitta, Relations among topological solitons, Phys. Rev. D 105 (2022) 105006 [arXiv:2202.03929] [INSPIRE].
R.C. Brower, K.N. Orginos and C.-I. Tan, Magnetic monopole loop for the Yang-Mills instanton, Phys. Rev. D 55 (1997) 6313 [hep-th/9610101] [INSPIRE].
M.F. Atiyah and I.M. Singer, The index of elliptic operators on compact manifolds, Bull. Am. Math. Soc. 69 (1969) 422 [INSPIRE].
T. Schäfer and E.V. Shuryak, Instantons in QCD, Rev. Mod. Phys. 70 (1998) 323 [hep-ph/9610451] [INSPIRE].
Y. Choi, M. Forslund, H.T. Lam and S.-H. Shao, Quantization of Axion-Gauge Couplings and Non-Invertible Higher Symmetries, Phys. Rev. Lett. 132 (2024) 121601 [arXiv:2309.03937] [INSPIRE].
M. Reece, Axion-gauge coupling quantization with a twist, JHEP 10 (2023) 116 [arXiv:2309.03939] [INSPIRE].
C. Alexandrou et al., Ruling Out the Massless Up-Quark Solution to the Strong CP Problem by Computing the Topological Mass Contribution with Lattice QCD, Phys. Rev. Lett. 125 (2020) 232001 [arXiv:2002.07802] [INSPIRE].
M. Dine, P. Draper and G. Festuccia, Instanton Effects in Three Flavor QCD, Phys. Rev. D 92 (2015) 054004 [arXiv:1410.8505] [INSPIRE].
F. Wilczek, Axions and Family Symmetry Breaking, Phys. Rev. Lett. 49 (1982) 1549 [INSPIRE].
E. Izaguirre, T. Lin and B. Shuve, Searching for Axionlike Particles in Flavor-Changing Neutral Current Processes, Phys. Rev. Lett. 118 (2017) 111802 [arXiv:1611.09355] [INSPIRE].
N. Seiberg and E. Witten, Electric-magnetic duality, monopole condensation, and confinement in N = 2 supersymmetric Yang-Mills theory, Nucl. Phys. B 426 (1994) 19 [hep-th/9407087] [INSPIRE].
N. Seiberg and E. Witten, Monopoles, duality and chiral symmetry breaking in N = 2 supersymmetric QCD, Nucl. Phys. B 431 (1994) 484 [hep-th/9408099] [INSPIRE].
Acknowledgments
I would like to thank Prateek Agrawal, Junwu Huang, Ethan Carragher, Matthew Reece and especially Mario Reig for helpful discussions. I would also like to thank the referee for useful comments and suggestions. Any errors are my own. This paper was inspired by analogous considerations of a dual photon mass in the recent paper [68]. Arthur Platschorre is supported by a STFC Studenship No. 2397217 and Cultuurfondsbeurs No. 40038041 made possible by the Pieter Beijer fonds and the Data-Piet fonds.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2405.14931
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Platschorre, A. A mass for the dual axion. J. High Energ. Phys. 2024, 253 (2024). https://doi.org/10.1007/JHEP10(2024)253
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2024)253
