Abstract
We investigate the effect of quantum decoherence and relaxation in neutrino oscillations using MINOS and T2K data. The formalism of open quantum systems is used to describe the interaction of a neutrino system with the environment, where the strength of the interaction is regulated by a decoherence parameter Γ. We assume an energy dependence parameterized by Γ = γ0(E/GeV)n, with n = −2, 0, +2, and consider three different scenarios, allowing the investigation of the effect of relaxation and of constraining the solar and atmospheric sectors to the same decoherence parameter. The MINOS and T2K data present a complementary behavior, with regard to our theoretical model, resulting in a better sensitivity for n = +2 and n = −2, respectively. We perform a combined analyses of both experimental data, which also include a reactor constraint on sin2 θ13, and observe an independence of the results to the scenarios we investigate. Our analyses obtain limits on γ0 based on long-baseline data for scenarios allowing or not relaxation. We improve some previous bounds on γ0 and outline which data (solar, reactor, atmospheric, long-baseline) determine the more stringent constraints for different scenarios and energy dependencies.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
T. Kajita, Discovery of Atmospheric Neutrino Oscillations, https://www.nobelprize.org/prizes/physics/2015/kajita/lecture/, (2015).
M.C. Gonzalez-Garcia and Y. Nir, Neutrino Masses and Mixing: Evidence and Implications, Rev. Mod. Phys. 75 (2003) 345 [hep-ph/0202058] [INSPIRE].
J.R. Ellis, J.S. Hagelin, D.V. Nanopoulos and M. Srednicki, Search for Violations of Quantum Mechanics, Nucl. Phys. B 241 (1984) 381 [INSPIRE].
D. Chruściński and S. Pascazio, A Brief History of the GKLS Equation, Open Systems & Information Dynamics 24 (2017) 1740001 [arXiv:1710.05993].
G. Lindblad, On the Generators of Quantum Dynamical Semigroups, Commun. Math. Phys. 48 (1976) 119 [INSPIRE].
V. Gorini, A. Kossakowski and E.C.G. Sudarshan, Completely Positive Dynamical Semigroups of N Level Systems, J. Math. Phys. 17 (1976) 821 [INSPIRE].
M.M. Guzzo, P.C. de Holanda and R.L.N. Oliveira, Quantum Dissipation in a Neutrino System Propagating in Vacuum and in Matter, Nucl. Phys. B 908 (2016) 408 [arXiv:1408.0823] [INSPIRE].
R.A. Gomes, A.L.G. Gomes and O.L.G. Peres, Constraints on neutrino decay lifetime using long-baseline charged and neutral current data, Phys. Lett. B 740 (2015) 345 [arXiv:1407.5640] [INSPIRE].
E. Lisi, A. Marrone and D. Montanino, Probing possible decoherence effects in atmospheric neutrino oscillations, Phys. Rev. Lett. 85 (2000) 1166 [hep-ph/0002053] [INSPIRE].
P. Coloma, J. Lopez-Pavon, I. Martinez-Soler and H. Nunokawa, Decoherence in Neutrino Propagation Through Matter, and Bounds from IceCube/DeepCore, Eur. Phys. J. C 78 (2018) 614 [arXiv:1803.04438] [INSPIRE].
M. Ahlers, K. Helbing and C. Pérez de los Heros, Probing Particle Physics with IceCube, Eur. Phys. J. C 78 (2018) 924 [arXiv:1806.05696] [INSPIRE].
A.M. Gago, E.M. Santos, W.J.C. Teves and R. Zukanovich Funchal, On the quest for the dynamics of νμ → ντ conversion, Phys. Rev. D 63 (2001) 113013 [hep-ph/0010092] [INSPIRE].
A.M. Gago, E.M. Santos, W.J.C. Teves and R. Zukanovich Funchal, Quantum dissipative effects and neutrinos: Current constraints and future perspectives, Phys. Rev. D 63 (2001) 073001 [hep-ph/0009222] [INSPIRE].
R.L.N. Oliveira and M.M. Guzzo, Quantum dissipation in vacuum neutrino oscillation, Eur. Phys. J. C 69 (2010) 493 [INSPIRE].
R.L.N. de Oliveira, M.M. Guzzo and P.C. de Holanda, Quantum Dissipation and CP Violation in MINOS, Phys. Rev. D 89 (2014) 053002 [arXiv:1401.0033] [INSPIRE].
R.L.N. Oliveira, Dissipative Effect in Long Baseline Neutrino Experiments, Eur. Phys. J. C 76 (2016) 417 [arXiv:1603.08065] [INSPIRE].
G. Balieiro Gomes, M.M. Guzzo, P.C. de Holanda and R.L.N. Oliveira, Parameter Limits for Neutrino Oscillation with Decoherence in KamLAND, Phys. Rev. D 95 (2017) 113005 [arXiv:1603.04126] [INSPIRE].
J.A.B. Coelho and W.A. Mann, Decoherence, matter effect, and neutrino hierarchy signature in long baseline experiments, Phys. Rev. D 96 (2017) 093009 [arXiv:1708.05495] [INSPIRE].
J.A.B. Coelho, W.A. Mann and S.S. Bashar, Nonmaximal θ23 mixing at NOvA from neutrino decoherence, Phys. Rev. Lett. 118 (2017) 221801 [arXiv:1702.04738] [INSPIRE].
J. Carpio, E. Massoni and A.M. Gago, Revisiting quantum decoherence for neutrino oscillations in matter with constant density, Phys. Rev. D 97 (2018) 115017 [arXiv:1711.03680] [INSPIRE].
G. Balieiro Gomes et al., Quantum Decoherence Effects in Neutrino Oscillations at DUNE, Phys. Rev. D 100 (2019) 055023 [arXiv:1805.09818] [INSPIRE].
A.M. Gago, E.M. Santos, W.J.C. Teves and R. Zukanovich Funchal, A Study on quantum decoherence phenomena with three generations of neutrinos, hep-ph/0208166 [INSPIRE].
G.L. Fogli et al., Probing non-standard decoherence effects with solar and KamLAND neutrinos, Phys. Rev. D 76 (2007) 033006 [arXiv:0704.2568] [INSPIRE].
P.C. de Holanda, Solar Neutrino Limits on Decoherence, JCAP 03 (2020) 012 [arXiv:1909.09504] [INSPIRE].
A. de Gouvea, V. de Romeri and C.A. Ternes, Probing neutrino quantum decoherence at reactor experiments, JHEP 08 (2020) 018 [arXiv:2005.03022] [INSPIRE].
A. de Gouvêa, V. De Romeri and C.A. Ternes, Combined analysis of neutrino decoherence at reactor experiments, JHEP 06 (2021) 042 [arXiv:2104.05806] [INSPIRE].
JUNO collaboration, Damping signatures at JUNO, a medium-baseline reactor neutrino oscillation experiment, JHEP 06 (2022) 062 [arXiv:2112.14450] [INSPIRE].
V. De Romeri, C. Giunti, T. Stuttard and C.A. Ternes, Neutrino oscillation bounds on quantum decoherence, JHEP 09 (2023) 097 [arXiv:2306.14699] [INSPIRE].
V. D’Esposito and G. Gubitosi, Constraints on quantum spacetime-induced decoherence from neutrino oscillations, arXiv:2306.14778 [INSPIRE].
G. Barenboim and N.E. Mavromatos, CPT violating decoherence and LSND: A Possible window to Planck scale physics, JHEP 01 (2005) 034 [hep-ph/0404014] [INSPIRE].
Y. Farzan, T. Schwetz and A.Y. Smirnov, Reconciling results of LSND, MiniBooNE and other experiments with soft decoherence, JHEP 07 (2008) 067 [arXiv:0805.2098] [INSPIRE].
P. Bakhti, Y. Farzan and T. Schwetz, Revisiting the quantum decoherence scenario as an explanation for the LSND anomaly, JHEP 05 (2015) 007 [arXiv:1503.05374] [INSPIRE].
K. Dixit, J. Naikoo, S. Banerjee and A. Kumar Alok, Study of coherence and mixedness in meson and neutrino systems, Eur. Phys. J. C 79 (2019) 96 [arXiv:1809.09947] [INSPIRE].
NOvA collaboration, New constraints on oscillation parameters from νe appearance and νμ disappearance in the NOvA experiment, Phys. Rev. D 98 (2018) 032012 [arXiv:1806.00096] [INSPIRE].
T2K collaboration, Measurement of neutrino and antineutrino oscillations by the T2K experiment including a new additional sample of νe interactions at the far detector, Phys. Rev. D 96 (2017) 092006 [Erratum ibid. 98 (2018) 019902] [arXiv:1707.01048] [INSPIRE].
F. Benatti and R. Floreanini, Massless neutrino oscillations, Phys. Rev. D 64 (2001) 085015 [hep-ph/0105303] [INSPIRE].
N.E. Mavromatos and S. Sarkar, Probing Models of Quantum Decoherence in Particle Physics and Cosmology, hep-ph/0612193 [INSPIRE].
A. Sakharov et al., Exploration of Possible Quantum Gravity Effects with Neutrinos. I. Decoherence in Neutrino Oscillations Experiments, J. Phys. Conf. Ser. 171 (2009) 012038 [arXiv:0903.4985] [INSPIRE].
R.L.N. Oliveira and M.M. Guzzo, Dissipation and θ13 in neutrino oscillations, Eur. Phys. J. C 73 (2013) 2434 [INSPIRE].
G. Lambiase, L. Mastrototaro and L. Visinelli, Astrophysical neutrino oscillations after pulsar timing array analyses, arXiv:2306.16977 [INSPIRE].
Daya Bay collaboration, Measurement of the Electron Antineutrino Oscillation with 1958 Days of Operation at Daya Bay, Phys. Rev. Lett. 121 (2018) 241805 [arXiv:1809.02261] [INSPIRE].
Double Chooz collaboration, Indication of Reactor \( \overline{\nu} \)e Disappearance in the Double Chooz Experiment, Phys. Rev. Lett. 108 (2012) 131801 [arXiv:1112.6353] [INSPIRE].
J.A. Carpio, E. Massoni and A.M. Gago, Testing quantum decoherence at DUNE, Phys. Rev. D 100 (2019) 015035 [arXiv:1811.07923] [INSPIRE].
A. Capolupo, S.M. Giampaolo and G. Lambiase, Decoherence in neutrino oscillations, neutrino nature and CPT violation, Phys. Lett. B 792 (2019) 298 [arXiv:1807.07823] [INSPIRE].
J.C. Carrasco, F.N. Díaz and A.M. Gago, Probing CPT breaking induced by quantum decoherence at DUNE, Phys. Rev. D 99 (2019) 075022 [arXiv:1811.04982] [INSPIRE].
L. Buoninfante, A. Capolupo, S.M. Giampaolo and G. Lambiase, Revealing neutrino nature and CPT violation with decoherence effects, Eur. Phys. J. C 80 (2020) 1009 [arXiv:2001.07580] [INSPIRE].
E. Akhmedov, J. Kopp and M. Lindner, Collective neutrino oscillations and neutrino wave packets, JCAP 09 (2017) 017 [arXiv:1702.08338] [INSPIRE].
J. Kersten and A.Y. Smirnov, Decoherence and oscillations of supernova neutrinos, Eur. Phys. J. C 76 (2016) 339 [arXiv:1512.09068] [INSPIRE].
K. Stankevich and A. Studenikin, The effect of neutrino quantum decoherence, PoS EPS-HEP2019 (2020) 424 [arXiv:1912.13313] [INSPIRE].
A.O. Caldeira and A.J. Leggett, Influence of dissipation on quantum tunneling in macroscopic systems, Phys. Rev. Lett. 46 (1981) 211 [INSPIRE].
Z. Huang, Entropic Uncertainty in Neutrino and Meson Systems, Annalen Phys. 531 (2019) 1900140 [INSPIRE].
D. Boriero, D.J. Schwarz and H. Velten, Flavour composition and entropy increase of cosmological neutrinos after decoherence, Universe 5 (2019) 203 [arXiv:1704.06139] [INSPIRE].
T. Cheng, M. Lindner and W. Rodejohann, Microscopic and macroscopic effects in the decoherence of neutrino oscillations, JHEP 08 (2022) 111 [arXiv:2204.10696] [INSPIRE].
M. Richter-Laskowska, M. Łobejko and J. Dajka, Quantum contextuality of a single neutrino under interactions with matter, New J. Phys. 20 (2018) 063040 [INSPIRE].
F. Benatti and R. Floreanini, Open system approach to neutrino oscillations, JHEP 02 (2000) 032 [hep-ph/0002221] [INSPIRE].
C. Jarlskog, Commutator of the Quark Mass Matrices in the Standard Electroweak Model and a Measure of Maximal CP Nonconservation, Phys. Rev. Lett. 55 (1985) 1039 [INSPIRE].
C. Jarlskog, A Basis Independent Formulation of the Connection Between Quark Mass Matrices, CP Violation and Experiment, Z. Phys. C 29 (1985) 491 [INSPIRE].
MINOS collaboration, Measurement of Neutrino and Antineutrino Oscillations Using Beam and Atmospheric Data in MINOS, Phys. Rev. Lett. 110 (2013) 251801 [arXiv:1304.6335] [INSPIRE].
T2K collaboration, Updated T2K measurements of muon neutrino and antineutrino disappearance using 1.5 × 1021 protons on target, Phys. Rev. D 96 (2017) 011102 [arXiv:1704.06409] [INSPIRE].
T2K collaboration, Combined Analysis of Neutrino and Antineutrino Oscillations at T2K, Phys. Rev. Lett. 118 (2017) 151801 [arXiv:1701.00432] [INSPIRE].
I. Esteban et al., Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].
MINOS collaboration, A Study of Muon Neutrino Disappearance Using the Fermilab Main Injector Neutrino Beam, Phys. Rev. D 77 (2008) 072002 [arXiv:0711.0769] [INSPIRE].
G.L. Fogli et al., Getting the most from the statistical analysis of solar neutrino oscillations, Phys. Rev. D 66 (2002) 053010 [hep-ph/0206162] [INSPIRE].
P. Huber, M. Lindner and W. Winter, Superbeams versus neutrino factories, Nucl. Phys. B 645 (2002) 3 [hep-ph/0204352] [INSPIRE].
I. Esteban et al., Updated fit to three neutrino mixing: exploring the accelerator-reactor complementarity, JHEP 01 (2017) 087 [arXiv:1611.01514] [INSPIRE].
Daya Bay collaboration, Measurement of electron antineutrino oscillation based on 1230 days of operation of the Daya Bay experiment, Phys. Rev. D 95 (2017) 072006 [arXiv:1610.04802] [INSPIRE].
F. Benatti and H. Narnhofer, Entropy behavior under completely positive maps, Lett. Math. Phys. 15 (1988) 325 [INSPIRE].
R.L.N. de Oliveira, Quantum dissipation in neutrino oscillations (in portuguese), Ph.D. thesis, Campinas University, Brazil (2016), https://doi.org/10.47749/T/UNICAMP.2012.869207.
S.J. Hernández-Goicochea, Revistando effectos de decoherencia en las oscillaciones de neutrinos, Ph.D. thesis, Pontíficia Universidade Católica, Peru (2017), http://tesis.pucp.edu.pe/repositorio/bitstream/handle/20.500.12404/7440/HERNANDEZ_SANDRO_REVISITANDO_DECOHERENCIA_NEUTRINOS.pdf.
A.L.G. Gomes, Decoerência quântica em neutrinos de aceleradores, Ph.D. thesis, Universidade Federal de Goias, Brazil (2019), http://repositorio.bc.ufg.br/tede/handle/tede/9518.
F. da Rocha Vaz Bandeira de Melo, Descoerência na propagação de neutrinos, M.Sc. thesis, Campinas University, Brazil (2003) https://doi.org/10.47749/T/UNICAMP.2003.293543.
F.V.D. De Melo, M. Guzzo, O.L.G. Peres and P.C. De Holanda, Neutrino oscillation induced by decoherence: general approach and a fit to KamLAND, in the proceedings of the The Tenth Marcel Grossmann Meeting, MG10, Rio de Janeiro, Brazil, 20–26 July 2006, pp. 1243–1245 [https://doi.org/10.1142/9789812704030_0080].
D. Morgan, E. Winstanley, J. Brunner and L.F. Thompson, Probing quantum decoherence in atmospheric neutrino oscillations with a neutrino telescope, Astropart. Phys. 25 (2006) 311 [astro-ph/0412618] [INSPIRE].
D. Hooper, D. Morgan and E. Winstanley, Probing quantum decoherence with high-energy neutrinos, Phys. Lett. B 609 (2005) 206 [hep-ph/0410094] [INSPIRE].
G. Barenboim, N.E. Mavromatos, S. Sarkar and A. Waldron-Lauda, Quantum decoherence and neutrino data, Nucl. Phys. B 758 (2006) 90 [hep-ph/0603028] [INSPIRE].
M.E. Mosquera and O. Civitarese, Decoherence effect in neutrinos produced in microquasar jets, JCAP 04 (2018) 036 [arXiv:1708.09714] [INSPIRE].
M.E. Mosquera and O. Civitarese, Decoherence-effects in the neutrino-mixing mechanism: active and sterile neutrinos in the three flavor scheme, arXiv:1807.03690 [INSPIRE].
G.B. Gomes, Limites para parâmetros de descoerência quântica em oscilação de neutrinos, Ph.D. thesis, Campinas University, Brazil (2020) [https://doi.org/10.47749/T/UNICAMP.2018.1062802].
J.C. Carrasco-Martínez, F.N. Díaz and A.M. Gago, Uncovering the Majorana nature through a precision measurement of the CP phase, Phys. Rev. D 105 (2022) 035010 [arXiv:2011.01254] [INSPIRE].
G. Figueiredo Severiano Alves, Decoherence in Neutrino Oscillations in the IceCube Experiment (), M.Sc. thesis, Sao Paulo University, Brazil (2020) [INSPIRE].
IceCube collaboration, Determination of the Atmospheric Neutrino Flux and Searches for New Physics with AMANDA-II, Phys. Rev. D 79 (2009) 102005 [arXiv:0902.0675] [INSPIRE].
Z. Maki, M. Nakagawa and S. Sakata, Remarks on the unified model of elementary particles, Prog. Theor. Phys. 28 (1962) 870 [INSPIRE].
B. Pontecorvo, Mesonium and anti-mesonium, Sov. Phys. JETP 6 (1957) 429 [INSPIRE].
A.M. Gago et al., Visible neutrino decay in the light of appearance and disappearance long baseline experiments, JHEP 11 (2017) 022 [arXiv:1705.03074] [INSPIRE].
Acknowledgments
The authors thanks Carlos Arguelles for valuable discussion about the paper. R.A.G. was supported by FAPEG and by CNPq grants 307334/2019-8 and 310708/2022-2. O.L.G.P. was supported by FAPESP funding Grant 2016/08308-2, FAEPEX funding grant 2391/2017 and 2541/2019, and CNPq grants 306565/2019-6 and 306405/2022-9. R.A.G. and O.L.G.P. are thankful for the support of FAPESP funding Grant 2014/19164-6. This study was funded in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2001.09250
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Gomes, A.L.G., Gomes, R.A. & Peres, O.L.G. Quantum decoherence and relaxation in long-baseline neutrino data. J. High Energ. Phys. 2023, 35 (2023). https://doi.org/10.1007/JHEP10(2023)035
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2023)035