Skip to main content

Advertisement

SpringerLink
Axiogenesis with a heavy QCD axion
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 19 October 2022

Axiogenesis with a heavy QCD axion

  • Raymond T. Co  ORCID: orcid.org/0000-0002-8395-70561,2,
  • Tony Gherghetta2 &
  • Keisuke Harigaya3 

Journal of High Energy Physics volume 2022, Article number: 121 (2022) Cite this article

  • 123 Accesses

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We demonstrate that the observed cosmological excess of matter over anti-matter may originate from a heavy QCD axion that solves the strong CP problem but has a mass much larger than that given by the Standard Model QCD strong dynamics. We investigate a rotation of the heavy QCD axion in field space, which is transferred into a baryon asymmetry through weak and strong sphaleron processes. This provides a strong cosmological motivation for heavy QCD axions, which are of high experimental interest. The viable parameter space has an axion mass ma between 1 MeV and 10 GeV and a decay constant fa < 105 GeV, which can be probed by accelerator-based direct axion searches and observations of the cosmic microwave background.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. J.S. Bell and R. Jackiw, A PCAC puzzle: π0 → γγ in the σ model, Nuovo Cim. A 60 (1969) 47 [INSPIRE].

  2. S.L. Adler, Axial vector vertex in spinor electrodynamics, Phys. Rev. 177 (1969) 2426 [INSPIRE].

    Article  ADS  Google Scholar 

  3. G. ’t Hooft, Symmetry Breaking Through Bell-Jackiw Anomalies, Phys. Rev. Lett. 37 (1976) 8 [INSPIRE].

  4. R.J. Crewther, P. Di Vecchia, G. Veneziano and E. Witten, Chiral Estimate of the Electric Dipole Moment of the Neutron in Quantum Chromodynamics, Phys. Lett. B 88 (1979) 123 [Erratum ibid. 91 (1980) 487] [INSPIRE].

  5. C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].

  6. R.D. Peccei and H.R. Quinn, CP Conservation in the Presence of Instantons, Phys. Rev. Lett. 38 (1977) 1440 [INSPIRE].

  7. R.D. Peccei and H.R. Quinn, Constraints Imposed by CP Conservation in the Presence of Instantons, Phys. Rev. D 16 (1977) 1791 [INSPIRE].

  8. S. Weinberg, A New Light Boson?, Phys. Rev. Lett. 40 (1978) 223 [INSPIRE].

    Article  ADS  Google Scholar 

  9. F. Wilczek, Problem of Strong P and T Invariance in the Presence of Instantons, Phys. Rev. Lett. 40 (1978) 279 [INSPIRE].

    Article  ADS  Google Scholar 

  10. R.T. Co and K. Harigaya, Axiogenesis, Phys. Rev. Lett. 124 (2020) 111602 [arXiv:1910.02080] [INSPIRE].

  11. R.T. Co, L.J. Hall and K. Harigaya, Axion Kinetic Misalignment Mechanism, Phys. Rev. Lett. 124 (2020) 251802 [arXiv:1910.14152] [INSPIRE].

  12. R.T. Co, N. Fernandez, A. Ghalsasi, L.J. Hall and K. Harigaya, Lepto-Axiogenesis, JHEP 03 (2021) 017 [arXiv:2006.05687] [INSPIRE].

    Article  ADS  Google Scholar 

  13. K. Harigaya and I.R. Wang, Axiogenesis from SU(2)R phase transition, JHEP 10 (2021) 022 [Erratum ibid. 12 (2021) 193] [arXiv:2107.09679] [INSPIRE].

  14. R.T. Co, K. Harigaya, Z. Johnson and A. Pierce, R-parity violation axiogenesis, JHEP 11 (2021) 210 [arXiv:2110.05487] [INSPIRE].

    Article  ADS  Google Scholar 

  15. S. Chakraborty, T.H. Jung and T. Okui, Composite neutrinos and the QCD axion: Baryogenesis, dark matter, small Dirac neutrino masses, and vanishing neutron electric dipole moment, Phys. Rev. D 105 (2022) 015024 [arXiv:2108.04293] [INSPIRE].

  16. J. Kawamura and S. Raby, Lepto-axiogenesis in minimal SUSY KSVZ model, JHEP 04 (2022) 116 [arXiv:2109.08605] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  17. S. Dimopoulos, A Solution of the Strong CP Problem in Models With Scalars, Phys. Lett. B 84 (1979) 435 [INSPIRE].

    Article  ADS  Google Scholar 

  18. V.A. Rubakov, Grand unification and heavy axion, JETP Lett. 65 (1997) 621 [hep-ph/9703409] [INSPIRE].

  19. Z. Berezhiani, L. Gianfagna and M. Giannotti, Strong CP problem and mirror world: The Weinberg-Wilczek axion revisited, Phys. Lett. B 500 (2001) 286 [hep-ph/0009290] [INSPIRE].

  20. A. Hook, Anomalous solutions to the strong CP problem, Phys. Rev. Lett. 114 (2015) 141801 [arXiv:1411.3325] [INSPIRE].

  21. H. Fukuda, K. Harigaya, M. Ibe and T.T. Yanagida, Model of visible QCD axion, Phys. Rev. D 92 (2015) 015021 [arXiv:1504.06084] [INSPIRE].

  22. T. Gherghetta, N. Nagata and M. Shifman, A Visible QCD Axion from an Enlarged Color Group, Phys. Rev. D 93 (2016) 115010 [arXiv:1604.01127] [INSPIRE].

  23. P. Agrawal and K. Howe, Factoring the Strong CP Problem, JHEP 12 (2018) 029 [arXiv:1710.04213] [INSPIRE].

    Article  ADS  Google Scholar 

  24. P. Agrawal and K. Howe, A Flavorful Factoring of the Strong CP Problem, JHEP 12 (2018) 035 [arXiv:1712.05803] [INSPIRE].

    Article  ADS  Google Scholar 

  25. M.K. Gaillard, M.B. Gavela, R. Houtz, P. Quilez and R. Del Rey, Color unified dynamical axion, Eur. Phys. J. C 78 (2018) 972 [arXiv:1805.06465] [INSPIRE].

    Article  ADS  Google Scholar 

  26. A. Hook, S. Kumar, Z. Liu and R. Sundrum, High Quality QCD Axion and the LHC, Phys. Rev. Lett. 124 (2020) 221801 [arXiv:1911.12364] [INSPIRE].

  27. C. Csáki, M. Ruhdorfer and Y. Shirman, UV Sensitivity of the Axion Mass from Instantons in Partially Broken Gauge Groups, JHEP 04 (2020) 031 [arXiv:1912.02197] [INSPIRE].

    Article  ADS  Google Scholar 

  28. T. Gherghetta, V.V. Khoze, A. Pomarol and Y. Shirman, The Axion Mass from 5D Small Instantons, JHEP 03 (2020) 063 [arXiv:2001.05610] [INSPIRE].

    Article  ADS  Google Scholar 

  29. T. Gherghetta and M.D. Nguyen, A Composite Higgs with a Heavy Composite Axion, JHEP 12 (2020) 094 [arXiv:2007.10875] [INSPIRE].

    Article  ADS  Google Scholar 

  30. H.M. Georgi, L.J. Hall and M.B. Wise, Grand Unified Models With an Automatic Peccei-Quinn Symmetry, Nucl. Phys. B 192 (1981) 409 [INSPIRE].

    Article  ADS  Google Scholar 

  31. M.J. Perry, TP Inversion in Quantum Gravity, Phys. Rev. D 19 (1979) 1720 [INSPIRE].

  32. S.W. Hawking, D.N. Page and C.N. Pope, The propagation of particles in space-time foam, Phys. Lett. B 86 (1979) 175 [INSPIRE].

    Article  ADS  Google Scholar 

  33. S.B. Giddings and A. Strominger, Loss of Incoherence and Determination of Coupling Constants in Quantum Gravity, Nucl. Phys. B 307 (1988) 854 [INSPIRE].

    Article  ADS  Google Scholar 

  34. G. Gilbert, Wormhole induced proton decay, Nucl. Phys. B 328 (1989) 159 [INSPIRE].

    Article  ADS  Google Scholar 

  35. R. Kallosh, A.D. Linde, D.A. Linde and L. Susskind, Gravity and global symmetries, Phys. Rev. D 52 (1995) 912 [hep-th/9502069] [INSPIRE].

    Article  ADS  Google Scholar 

  36. D. Harlow and H. Ooguri, Constraints on Symmetries from Holography, Phys. Rev. Lett. 122 (2019) 191601 [arXiv:1810.05337] [INSPIRE].

  37. D. Harlow and H. Ooguri, Symmetries in quantum field theory and quantum gravity, Commun. Math. Phys. 383 (2021) 1669 [arXiv:1810.05338] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  38. R. Holman, S.D.H. Hsu, T.W. Kephart, E.W. Kolb, R. Watkins and L.M. Widrow, Solutions to the strong CP problem in a world with gravity, Phys. Lett. B 282 (1992) 132 [hep-ph/9203206] [INSPIRE].

  39. S.M. Barr and D. Seckel, Planck scale corrections to axion models, Phys. Rev. D 46 (1992) 539 [INSPIRE].

  40. M. Kamionkowski and J. March-Russell, Planck scale physics and the Peccei-Quinn mechanism, Phys. Lett. B 282 (1992) 137 [hep-th/9202003] [INSPIRE].

    Article  ADS  Google Scholar 

  41. M. Dine, Problems of naturalness: Some lessons from string theory, in Conference on Topics in Quantum Gravity, 7, 1992 [hep-th/9207045] [INSPIRE].

  42. G. Lazarides, C. Panagiotakopoulos and Q. Shafi, Phenomenology and Cosmology With Superstrings, Phys. Rev. Lett. 56 (1986) 432 [INSPIRE].

  43. L. Randall, Composite axion models and Planck scale physics, Phys. Lett. B 284 (1992) 77 [INSPIRE].

  44. A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion and local Z(13) x Z(3) symmetries, Phys. Rev. D 69 (2004) 015007 [hep-ph/0210172] [INSPIRE].

  45. A.G. Dias, V. Pleitez and M.D. Tonasse, Naturally light invisible axion in models with large local discrete symmetries, Phys. Rev. D 67 (2003) 095008 [hep-ph/0211107] [INSPIRE].

  46. K.S. Babu, I. Gogoladze and K. Wang, Stabilizing the axion by discrete gauge symmetries, Phys. Lett. B 560 (2003) 214 [hep-ph/0212339] [INSPIRE].

  47. K.-S. Choi, H.P. Nilles, S. Ramos-Sanchez and P.K.S. Vaudrevange, Accions, Phys. Lett. B 675 (2009) 381 [arXiv:0902.3070] [INSPIRE].

    Article  ADS  Google Scholar 

  48. L.M. Carpenter, M. Dine and G. Festuccia, Dynamics of the Peccei Quinn Scale, Phys. Rev. D 80 (2009) 125017 [arXiv:0906.1273] [INSPIRE].

  49. K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn symmetry from a gauged discrete R symmetry, Phys. Rev. D 88 (2013) 075022 [arXiv:1308.1227] [INSPIRE].

  50. K. Harigaya, M. Ibe, K. Schmitz and T.T. Yanagida, Peccei-Quinn Symmetry from Dynamical Supersymmetry Breaking, Phys. Rev. D 92 (2015) 075003 [arXiv:1505.07388] [INSPIRE].

  51. H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, A “gauged” U(1) Peccei–Quinn symmetry, Phys. Lett. B 771 (2017) 327 [arXiv:1703.01112] [INSPIRE].

  52. L. Di Luzio, E. Nardi and L. Ubaldi, Accidental Peccei-Quinn symmetry protected to arbitrary order, Phys. Rev. Lett. 119 (2017) 011801 [arXiv:1704.01122] [INSPIRE].

  53. H. Fukuda, M. Ibe, M. Suzuki and T.T. Yanagida, Gauged Peccei-Quinn symmetry — A case of simultaneous breaking of SUSY and PQ symmetry, JHEP 07 (2018) 128 [arXiv:1803.00759] [INSPIRE].

    Article  ADS  Google Scholar 

  54. M. Ibe, M. Suzuki and T.T. Yanagida, B − L as a Gauged Peccei-Quinn Symmetry, JHEP 08 (2018) 049 [arXiv:1805.10029] [INSPIRE].

    Article  ADS  Google Scholar 

  55. B. Lillard and T.M.P. Tait, A High Quality Composite Axion, JHEP 11 (2018) 199 [arXiv:1811.03089] [INSPIRE].

    Article  ADS  Google Scholar 

  56. H. Fukuda, M. Ibe and T.T. Yanagida, Dark Matter Candidates in a Visible Heavy QCD Axion Model, Phys. Rev. D 95 (2017) 095017 [arXiv:1702.00227] [INSPIRE].

  57. J. Jaeckel, V.M. Mehta and L.T. Witkowski, Monodromy Dark Matter, JCAP 01 (2017) 036 [arXiv:1605.01367] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  58. J. Berges, A. Chatrchyan and J. Jaeckel, Foamy Dark Matter from Monodromies, JCAP 08 (2019) 020 [arXiv:1903.03116] [INSPIRE].

    Article  ADS  Google Scholar 

  59. N. Fonseca, E. Morgante, R. Sato and G. Servant, Axion fragmentation, JHEP 04 (2020) 010 [arXiv:1911.08472] [INSPIRE].

    Article  ADS  Google Scholar 

  60. E. Morgante, W. Ratzinger, R. Sato and B.A. Stefanek, Axion fragmentation on the lattice, JHEP 12 (2021) 037 [arXiv:2109.13823] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  61. A.D. Dolgov and D.P. Kirilova, On particle creation by a time dependent scalar field, Sov. J. Nucl. Phys. 51 (1990) 172 [INSPIRE].

    Google Scholar 

  62. J.H. Traschen and R.H. Brandenberger, Particle Production During Out-of-equilibrium Phase Transitions, Phys. Rev. D 42 (1990) 2491 [INSPIRE].

  63. L. Kofman, A.D. Linde and A.A. Starobinsky, Reheating after inflation, Phys. Rev. Lett. 73 (1994) 3195 [hep-th/9405187] [INSPIRE].

    Article  ADS  Google Scholar 

  64. Y. Shtanov, J.H. Traschen and R.H. Brandenberger, Universe reheating after inflation, Phys. Rev. D 51 (1995) 5438 [hep-ph/9407247] [INSPIRE].

  65. L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

  66. I. Affleck and M. Dine, A New Mechanism for Baryogenesis, Nucl. Phys. B 249 (1985) 361 [INSPIRE].

    Article  ADS  Google Scholar 

  67. V. Domcke, K. Harigaya and K. Mukaida, Charge transfer between rotating complex scalar fields, JHEP 08 (2022) 234 [arXiv:2205.00942] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  68. M. Laine and M.E. Shaposhnikov, Thermodynamics of nontopological solitons, Nucl. Phys. B 532 (1998) 376 [hep-ph/9804237] [INSPIRE].

  69. Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].

  70. R.T. Co et al., Gravitational wave and CMB probes of axion kination, JHEP 09 (2022) 116 [arXiv:2108.09299] [INSPIRE].

    Article  ADS  Google Scholar 

  71. R.T. Co, K. Harigaya and A. Pierce, Gravitational waves and dark photon dark matter from axion rotations, JHEP 12 (2021) 099 [arXiv:2104.02077] [INSPIRE].

    Article  ADS  Google Scholar 

  72. J.H. Chang, R. Essig and S.D. McDermott, Supernova 1987A Constraints on Sub-GeV Dark Sectors, Millicharged Particles, the QCD Axion, and an Axion-like Particle, JHEP 09 (2018) 051 [arXiv:1803.00993] [INSPIRE].

  73. R.S. Bedi, T. Gherghetta and M. Pospelov, Enhanced EDMs from small instantons, Phys. Rev. D 106 (2022) 015030 [arXiv:2205.07948] [INSPIRE].

  74. G. Grilli di Cortona, E. Hardy, J. Pardo Vega and G. Villadoro, The QCD axion, precisely, JHEP 01 (2016) 034 [arXiv:1511.02867] [INSPIRE].

    Article  Google Scholar 

  75. L.J. Hall and K. Harigaya, Implications of Higgs Discovery for the Strong CP Problem and Unification, JHEP 10 (2018) 130 [arXiv:1803.08119] [INSPIRE].

    Article  ADS  Google Scholar 

  76. D. Dunsky, L.J. Hall and K. Harigaya, Dark Matter, Dark Radiation and Gravitational Waves from Mirror Higgs Parity, JHEP 02 (2020) 078 [arXiv:1908.02756] [INSPIRE].

  77. M. D’Onofrio, K. Rummukainen and A. Tranberg, Sphaleron Rate in the Minimal Standard Model, Phys. Rev. Lett. 113 (2014) 141602 [arXiv:1404.3565] [INSPIRE].

  78. D.I. Dunsky, L.J. Hall and K. Harigaya, Dark Radiation Constraints on Heavy QCD Axions, arXiv:2205.11540 [INSPIRE].

  79. B. Döbrich, J. Jaeckel, F. Kahlhoefer, A. Ringwald and K. Schmidt-Hoberg, ALPtraum: ALP production in proton beam dump experiments, JHEP 02 (2016) 018 [arXiv:1512.03069] [INSPIRE].

    Article  ADS  Google Scholar 

  80. M.J. Dolan, T. Ferber, C. Hearty, F. Kahlhoefer and K. Schmidt-Hoberg, Revised constraints and Belle II sensitivity for visible and invisible axion-like particles, JHEP 12 (2017) 094 [Erratum ibid. 03 (2021) 190] [arXiv:1709.00009] [INSPIRE].

  81. D. Aloni, Y. Soreq and M. Williams, Coupling QCD-Scale Axionlike Particles to Gluons, Phys. Rev. Lett. 123 (2019) 031803 [arXiv:1811.03474] [INSPIRE].

  82. FASER collaboration, FASER’s physics reach for long-lived particles, Phys. Rev. D 99 (2019) 095011 [arXiv:1811.12522] [INSPIRE].

  83. F. Ertas and F. Kahlhoefer, On the interplay between astrophysical and laboratory probes of MeV-scale axion-like particles, JHEP 07 (2020) 050 [arXiv:2004.01193] [INSPIRE].

    Article  ADS  Google Scholar 

  84. NA64 collaboration, Search for Axionlike and Scalar Particles with the NA64 Experiment, Phys. Rev. Lett. 125 (2020) 081801 [arXiv:2005.02710] [INSPIRE].

  85. S. Gori, G. Perez and K. Tobioka, KOTO vs. NA62 Dark Scalar Searches, JHEP 08 (2020) 110 [arXiv:2005.05170] [INSPIRE].

  86. NA62 collaboration, Measurement of the very rare K+→π+\( \nu \overline{\nu} \) decay, JHEP 06 (2021) 093 [arXiv:2103.15389] [INSPIRE].

  87. M. Bauer, M. Neubert, S. Renner, M. Schnubel and A. Thamm, Consistent Treatment of Axions in the Weak Chiral Lagrangian, Phys. Rev. Lett. 127 (2021) 081803 [arXiv:2102.13112] [INSPIRE].

  88. E. Goudzovski et al., New Physics Searches at Kaon and Hyperon Factories, arXiv:2201.07805 [INSPIRE].

  89. V. Cirigliano, G. Ecker, H. Neufeld, A. Pich and J. Portoles, Kaon Decays in the Standard Model, Rev. Mod. Phys. 84 (2012) 399 [arXiv:1107.6001] [INSPIRE].

    Article  ADS  Google Scholar 

  90. V.V. Gligorov, S. Knapen, M. Papucci and D.J. Robinson, Searching for Long-lived Particles: A Compact Detector for Exotics at LHCb, Phys. Rev. D 97 (2018) 015023 [arXiv:1708.09395] [INSPIRE].

  91. J.P. Chou, D. Curtin and H.J. Lubatti, New Detectors to Explore the Lifetime Frontier, Phys. Lett. B 767 (2017) 29 [arXiv:1606.06298] [INSPIRE].

    Article  ADS  Google Scholar 

  92. J.L. Feng, I. Galon, F. Kling and S. Trojanowski, Axionlike particles at FASER: The LHC as a photon beam dump, Phys. Rev. D 98 (2018) 055021 [arXiv:1806.02348] [INSPIRE].

  93. S. Chakraborty, M. Kraus, V. Loladze, T. Okui and K. Tobioka, Heavy QCD axion in b→s transition: Enhanced limits and projections, Phys. Rev. D 104 (2021) 055036 [arXiv:2102.04474] [INSPIRE].

  94. E. Bertholet, S. Chakraborty, V. Loladze, T. Okui, A. Soffer and K. Tobioka, Heavy QCD axion at Belle II: Displaced and prompt signals, Phys. Rev. D 105 (2022) L071701 [arXiv:2108.10331] [INSPIRE].

    Article  ADS  Google Scholar 

  95. K.J. Kelly, S. Kumar and Z. Liu, Heavy axion opportunities at the DUNE near detector, Phys. Rev. D 103 (2021) 095002 [arXiv:2011.05995] [INSPIRE].

  96. A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New LHC bound on low-mass diphoton resonances, Phys. Lett. B 783 (2018) 13 [arXiv:1710.01743] [INSPIRE].

    Article  ADS  Google Scholar 

  97. X. Cid Vidal, A. Mariotti, D. Redigolo, F. Sala and K. Tobioka, New Axion Searches at Flavor Factories, JHEP 01 (2019) 113 [Erratum ibid. 06 (2020) 141] [arXiv:1810.09452] [INSPIRE].

  98. S. Knapen, S. Kumar and D. Redigolo, Searching for axionlike particles with data scouting at ATLAS and CMS, Phys. Rev. D 105 (2022) 115012 [arXiv:2112.07720] [INSPIRE].

  99. ATLAS collaboration, Search for boosted diphoton resonances in the 10 to 70 GeV mass range using 138 fb−1 of 13 TeV pp collisions with the ATLAS detector, Tech. Rep. ATLAS-CONF-2022-018, CERN, Geneva, Switzerland (2022).

  100. M. Tegmark, A. Aguirre, M. Rees and F. Wilczek, Dimensionless constants, cosmology and other dark matters, Phys. Rev. D 73 (2006) 023505 [astro-ph/0511774] [INSPIRE].

  101. S. Antusch and V. Maurer, Running quark and lepton parameters at various scales, JHEP 11 (2013) 115 [arXiv:1306.6879] [INSPIRE].

    Article  ADS  Google Scholar 

  102. J. Martin Camalich, M. Pospelov, P.N.H. Vuong, R. Ziegler and J. Zupan, Quark Flavor Phenomenology of the QCD Axion, Phys. Rev. D 102 (2020) 015023 [arXiv:2002.04623] [INSPIRE].

  103. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    Article  ADS  Google Scholar 

  104. D. Bödeker, Moduli decay in the hot early Universe, JCAP 06 (2006) 027 [hep-ph/0605030] [INSPIRE].

  105. M. Laine, On bulk viscosity and moduli decay, Prog. Theor. Phys. Suppl. 186 (2010) 404 [arXiv:1007.2590] [INSPIRE].

    Article  ADS  MATH  Google Scholar 

  106. K. Mukaida and K. Nakayama, Dynamics of oscillating scalar field in thermal environment, JCAP 01 (2013) 017 [arXiv:1208.3399] [INSPIRE].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. William I. Fine Theoretical Physics Institute, University of Minnesota, Minneapolis, MN, 55455, USA

    Raymond T. Co

  2. School of Physics and Astronomy, University of Minnesota, Minneapolis, MN, 55455, USA

    Raymond T. Co & Tony Gherghetta

  3. Theoretical Physics Department, CERN, Geneva, Switzerland

    Keisuke Harigaya

Authors
  1. Raymond T. Co
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tony Gherghetta
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Keisuke Harigaya
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Raymond T. Co.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2206.00678

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Co, R.T., Gherghetta, T. & Harigaya, K. Axiogenesis with a heavy QCD axion. J. High Energ. Phys. 2022, 121 (2022). https://doi.org/10.1007/JHEP10(2022)121

Download citation

  • Received: 15 July 2022

  • Revised: 09 September 2022

  • Accepted: 22 September 2022

  • Published: 19 October 2022

  • DOI: https://doi.org/10.1007/JHEP10(2022)121

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Axions and ALPs
  • Baryo-and Leptogenesis
  • Cosmology of Theories BSM
  • Early Universe Particle Physics
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.