Skip to main content

Advertisement

SpringerLink
Multiple mass hierarchies from complex fixed point collisions
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 29 October 2021

Multiple mass hierarchies from complex fixed point collisions

  • Antón F. Faedo1,2,
  • Carlos Hoyos1,2,
  • David Mateos3,4 &
  • …
  • Javier G. Subils  ORCID: orcid.org/0000-0003-0104-97223 

Journal of High Energy Physics volume 2021, Article number: 246 (2021) Cite this article

  • 84 Accesses

  • 1 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

A pair of complex-conjugate fixed points that lie close to the real axis generates a large mass hierarchy in the real renormalization group flow that passes in between them. We show that pairs of complex fixed points that are close to the real axis and to one another generate multiple hierarchies, some of which can be parametrically enhanced. We illustrate this effect at weak coupling with field-theory examples, and at strong coupling using holography. We also construct complex flows between complex fixed points, including flows that violate the c-theorem.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. D.B. Kaplan, J.-W. Lee, D.T. Son and M.A. Stephanov, Conformality Lost, Phys. Rev. D 80 (2009) 125005 [arXiv:0905.4752] [INSPIRE].

    Article  ADS  Google Scholar 

  2. V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions, and Complex CFTs, JHEP 10 (2018) 108 [arXiv:1807.11512] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  3. V. Gorbenko, S. Rychkov and B. Zan, Walking, Weak first-order transitions, and Complex CFTs II. Two-dimensional Potts model at Q > 4, SciPost Phys. 5 (2018) 050 [arXiv:1808.04380] [INSPIRE].

  4. B.i. Halperin, T.C. Lubensky and S.-k. Ma, First order phase transitions in superconductors and smectic A liquid crystals, Phys. Rev. Lett. 32 (1974) 292 [INSPIRE].

  5. B. Nienhuis, A.N. Berker, E.K. Riedel and M. Schick, First and Second Order Phase Transitions in Potts Models: Renormalization-Group Solution, Phys. Rev. Lett. 43 (1979) 737 [INSPIRE].

    Article  ADS  Google Scholar 

  6. M. Nauenberg and D.J. Scalapino, Singularities and Scaling Functions at the Potts Model Multicritical Point, Phys. Rev. Lett. 44 (1980) 837 [INSPIRE].

    Article  ADS  Google Scholar 

  7. T. Senthil, A. Vishwanath, L. Balents, S. Sachdev and M.P.A. Fisher, Deconfined Quantum Critical Points, Science 303 (2004) 1490 [cond-mat/0311326] [INSPIRE].

  8. I.F. Herbut and L. Janssen, Topological Mott insulator in three-dimensional systems with quadratic band touching, Phys. Rev. Lett. 113 (2014) 106401 [arXiv:1404.5721] [INSPIRE].

    Article  ADS  Google Scholar 

  9. A. Nahum, J.T. Chalker, P. Serna, M. Ortuño and A.M. Somoza, Deconfined Quantum Criticality, Scaling Violations, and Classical Loop Models, Phys. Rev. X 5 (2015) 041048 [arXiv:1506.06798] [INSPIRE].

  10. C. Wang, A. Nahum, M.A. Metlitski, C. Xu and T. Senthil, Deconfined quantum critical points: symmetries and dualities, Phys. Rev. X 7 (2017) 031051 [arXiv:1703.02426] [INSPIRE].

  11. P. Serna and A. Nahum, Emergence and spontaneous breaking of approximate O(4) symmetry at a weakly first-order deconfined phase transition, Phys. Rev. B 99 (2019) 195110 [arXiv:1805.03759] [INSPIRE].

    Article  ADS  Google Scholar 

  12. B. Ihrig, N. Zerf, P. Marquard, I.F. Herbut and M.M. Scherer, Abelian Higgs model at four loops, fixed-point collision and deconfined criticality, Phys. Rev. B 100 (2019) 134507 [arXiv:1907.08140] [INSPIRE].

    Article  ADS  Google Scholar 

  13. L. Fei, S. Giombi, I.R. Klebanov and G. Tarnopolsky, Three loop analysis of the critical O(N) models in 6 − ε dimensions, Phys. Rev. D 91 (2015) 045011 [arXiv:1411.1099] [INSPIRE].

  14. J.A. Gracey, I.F. Herbut and D. Roscher, Tensor O(N) model near six dimensions: fixed points and conformal windows from four loops, Phys. Rev. D 98 (2018) 096014 [arXiv:1810.05721] [INSPIRE].

  15. T. Appelquist, D. Nash and L.C.R. Wijewardhana, Critical Behavior in (2 + 1)-Dimensional QED, Phys. Rev. Lett. 60 (1988) 2575 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. K.-i. Kubota and H. Terao, Dynamical symmetry breaking in QED3 from the Wilson RG point of view, Prog. Theor. Phys. 105 (2001) 809 [hep-ph/0101073] [INSPIRE].

  17. K. Kaveh and I.F. Herbut, Chiral symmetry breaking in QED3 in presence of irrelevant interactions: A Renormalization group study, Phys. Rev. B 71 (2005) 184519 [cond-mat/0411594] [INSPIRE].

  18. I.F. Herbut, Chiral symmetry breaking in three-dimensional quantum electrodynamics as fixed point annihilation, Phys. Rev. D 94 (2016) 025036 [arXiv:1605.09482] [INSPIRE].

  19. H. Gies and J. Jaeckel, Chiral phase structure of QCD with many flavors, Eur. Phys. J. C 46 (2006) 433 [hep-ph/0507171] [INSPIRE].

  20. E. Pomoni and L. Rastelli, Large N Field Theory and AdS Tachyons, JHEP 04 (2009) 020 [arXiv:0805.2261] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. O. Antipin, S. Di Chiara, M. Mojaza, E. Mølgaard and F. Sannino, A Perturbative Realization of Miransky Scaling, Phys. Rev. D 86 (2012) 085009 [arXiv:1205.6157] [INSPIRE].

  22. F.F. Hansen et al., Phase structure of complete asymptotically free SU(Nc) theories with quarks and scalar quarks, Phys. Rev. D 97 (2018) 065014 [arXiv:1706.06402] [INSPIRE].

  23. V.A. Miransky, Dynamics of Spontaneous Chiral Symmetry Breaking and Continuum Limit in Quantum Electrodynamics, Nuovo Cim. A 90 (1985) 149 [INSPIRE].

    Article  ADS  Google Scholar 

  24. M. Jarvinen and F. Sannino, Extreme Technicolor and The Walking Critical Temperature, JHEP 02 (2011) 081 [arXiv:1009.5380] [INSPIRE].

    Article  ADS  Google Scholar 

  25. J. Braun, C.S. Fischer and H. Gies, Beyond Miransky Scaling, Phys. Rev. D 84 (2011) 034045 [arXiv:1012.4279] [INSPIRE].

  26. A.F. Faedo, C. Hoyos, D. Mateos and J.G. Subils, Holographic Complex Conformal Field Theories, Phys. Rev. Lett. 124 (2020) 161601 [arXiv:1909.04008] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. M. Jarvinen and E. Kiritsis, Holographic Models for QCD in the Veneziano Limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].

    Article  ADS  Google Scholar 

  28. D. Arean, I. Iatrakis, M. Järvinen and E. Kiritsis, V-QCD: Spectra, the dilaton and the S-parameter, Phys. Lett. B 720 (2013) 219 [arXiv:1211.6125] [INSPIRE].

    Article  ADS  Google Scholar 

  29. D. Areán, I. Iatrakis, M. Järvinen and E. Kiritsis, The discontinuities of conformal transitions and mass spectra of V-QCD, JHEP 11 (2013) 068 [arXiv:1309.2286] [INSPIRE].

    Article  ADS  Google Scholar 

  30. K. Jensen, A. Karch, D.T. Son and E.G. Thompson, Holographic Berezinskii-Kosterlitz-Thouless Transitions, Phys. Rev. Lett. 105 (2010) 041601 [arXiv:1002.3159] [INSPIRE].

  31. N. Iqbal, H. Liu, M. Mezei and Q. Si, Quantum phase transitions in holographic models of magnetism and superconductors, Phys. Rev. D 82 (2010) 045002 [arXiv:1003.0010] [INSPIRE].

  32. A. Pomarol, O. Pujolàs and L. Salas, Holographic conformal transition and light scalars, JHEP 10 (2019) 202 [arXiv:1905.02653] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. D. Elander, M. Piai and J. Roughley, Dilatonic states near holographic phase transitions, Phys. Rev. D 103 (2021) 106018 [arXiv:2010.04100] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  34. D. Elander, M. Piai and J. Roughley, Light dilaton in a metastable vacuum, Phys. Rev. D 103 (2021) 046009 [arXiv:2011.07049] [INSPIRE].

  35. D. Elander, M. Piai and J. Roughley, Coulomb branch of N = 4 SYM and dilatonic scions in supergravity, Phys. Rev. D 104 (2021) 046003 [arXiv:2103.06721] [INSPIRE].

  36. J. Alanen, K. Kajantie and K. Tuominen, Thermodynamics of Quasi Conformal Theories From Gauge/Gravity Duality, Phys. Rev. D 82 (2010) 055024 [arXiv:1003.5499] [INSPIRE].

  37. J. Alanen, T. Alho, K. Kajantie and K. Tuominen, Mass spectrum and thermodynamics of quasi-conformal gauge theories from gauge/gravity duality, Phys. Rev. D 84 (2011) 086007 [arXiv:1107.3362] [INSPIRE].

  38. S. Gukov, RG Flows and Bifurcations, Nucl. Phys. B 919 (2017) 583 [arXiv:1608.06638] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  39. F. Benini, C. Iossa and M. Serone, Conformality Loss, Walking, and 4D Complex Conformal Field Theories at Weak Coupling, Phys. Rev. Lett. 124 (2020) 051602 [arXiv:1908.04325] [INSPIRE].

  40. A. Pelissetto, P. Rossi and E. Vicari, Large N critical behavior of O(n) × O(m) spin models, Nucl. Phys. B 607 (2001) 605 [hep-th/0104024] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  41. C. Bonati, A. Pelissetto and E. Vicari, Three-dimensional phase transitions in multiflavor lattice scalar SO(NC) gauge theories, Phys. Rev. E 101 (2020) 062105 [arXiv:2003.08160] [INSPIRE].

  42. S. Sachdev, H.D. Scammell, M.S. Scheurer and G. Tarnopolsky, Gauge theory for the cuprates near optimal doping, Phys. Rev. B 99 (2019) 054516 [arXiv:1811.04930] [INSPIRE].

  43. D.J. Binder and S. Rychkov, Deligne Categories in Lattice Models and Quantum Field Theory, or Making Sense of O(N) Symmetry with Non-integer N, JHEP 04 (2020) 117 [arXiv:1911.07895] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  44. C.B. Jepsen, I.R. Klebanov and F.K. Popov, RG limit cycles and unconventional fixed points in perturbative QFT, Phys. Rev. D 103 (2021) 046015 [arXiv:2010.15133] [INSPIRE].

  45. C.B. Jepsen and F.K. Popov, Homoclinic Renormalization Group Flows, or When Relevant Operators Become Irrelevant, Phys. Rev. Lett. 127 (2021) 141602 [arXiv:2105.01625] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  46. A. Donos, J.P. Gauntlett, C. Rosen and O. Sosa-Rodriguez, Boomerang RG flows in M-theory with intermediate scaling, JHEP 07 (2017) 128 [arXiv:1705.03000] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  47. A. Donos, J.P. Gauntlett, C. Rosen and O. Sosa-Rodriguez, Boomerang RG flows with intermediate conformal invariance, JHEP 04 (2018) 017 [arXiv:1712.08017] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  48. D.J. Amit and L. Peliti, On dangerous irrelevant operators, Annals Phys. 140 (1982) 207 [INSPIRE].

    Article  ADS  Google Scholar 

  49. S. Gukov, Counting RG flows, JHEP 01 (2016) 020 [arXiv:1503.01474] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Departamento de Física, Universidad de Oviedo, Federico García Lorca 18, ES-33007, Oviedo, Spain

    Antón F. Faedo & Carlos Hoyos

  2. Instituto Universitario de Ciencias y Tecnologías Espaciales de Asturias (ICTEA), Calle de la Independencia 13, ES-33004, Oviedo, Spain

    Antón F. Faedo & Carlos Hoyos

  3. Departament de Física Quántica i Astrofísica and Institut de Ciències del Cosmos (ICC), Universitat de Barcelona, Martí i Franquès 1, ES-08028, Barcelona, Spain

    David Mateos & Javier G. Subils

  4. Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, ES-08010, Barcelona, Spain

    David Mateos

Authors
  1. Antón F. Faedo
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Carlos Hoyos
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. David Mateos
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Javier G. Subils
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Javier G. Subils.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2106.01802

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faedo, A.F., Hoyos, C., Mateos, D. et al. Multiple mass hierarchies from complex fixed point collisions. J. High Energ. Phys. 2021, 246 (2021). https://doi.org/10.1007/JHEP10(2021)246

Download citation

  • Received: 16 June 2021

  • Revised: 29 September 2021

  • Accepted: 17 October 2021

  • Published: 29 October 2021

  • DOI: https://doi.org/10.1007/JHEP10(2021)246

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Gauge-gravity correspondence
  • Renormalization Group
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.