Abstract
KM3NeT/ORCA is a next-generation neutrino telescope optimised for atmospheric neutrino oscillations studies. In this paper, the sensitivity of ORCA to the presence of a light sterile neutrino in a 3+1 model is presented. After three years of data taking, ORCA will be able to probe the active-sterile mixing angles θ14, θ24, θ34 and the effective angle θμe, over a broad range of mass squared difference \( \Delta {m}_{41}^2 \) ∼ [10−5, 10] eV2, allowing to test the eV-mass sterile neutrino hypothesis as the origin of short baseline anomalies, as well as probing the hypothesis of a very light sterile neutrino, not yet constrained by cosmology. ORCA will be able to explore a relevant fraction of the parameter space not yet reached by present measurements.

References
V.N. Gribov and B. Pontecorvo, Neutrino astronomy and lepton charge, Phys. Lett. B 28 (1969) 493 [INSPIRE].
KM3Net collaboration, Letter of intent for KM3NeT 2.0, J. Phys. G 43 (2016) 084001 [arXiv:1601.07459] [INSPIRE].
P.A. Machado, O. Palamara and D.W. Schmitz, The short-baseline neutrino program at Fermilab, Ann. Rev. Nucl. Part. Sci. 69 (2019) 363 [arXiv:1903.04608] [INSPIRE].
DUNE collaboration, Deep Underground Neutrino Experiment (DUNE), far detector technical design report, volume I introduction to DUNE, 2020 JINST 15 T08008 [arXiv:2002.02967] [INSPIRE].
JUNO collaboration, The JUNO experiment, Nuovo Cim. C 39 (2017) 318 [INSPIRE].
K. Abe et al., Letter of intent: the hyper-Kamiokande experiment — detector design and physics potential, arXiv:1109.3262 [INSPIRE].
IceCube-Gen2 collaboration, IceCube-Gen2: the window to the extreme universe, J. Phys. G 48 (2021) 060501 [arXiv:2008.04323] [INSPIRE].
ICAL collaboration, Physics potential of the ICAL detector at the India-based Neutrino Observatory (INO), Pramana 88 (2017) 79 [arXiv:1505.07380] [INSPIRE].
A. Diaz, C.A. Argüelles, G.H. Collin, J.M. Conrad and M.H. Shaevitz, Where are we with light sterile neutrinos?, Phys. Rept. 884 (2020) 1 [arXiv:1906.00045] [INSPIRE].
ALEPH, DELPHI, L3, OPAL, SLD, LEP Electroweak Working Group, SLD Electroweak Group and SLD Heavy Flavour Group collaborations, Precision electroweak measurements on the Z resonance, Phys. Rept. 427 (2006) 257 [hep-ex/0509008] [INSPIRE].
LSND collaboration, Candidate events in a search for \( \overline{\nu} \)μ → \( \overline{\nu} \)e oscillations, Phys. Rev. Lett. 75 (1995) 2650 [nucl-ex/9504002] [INSPIRE].
MiniBooNE collaboration, Updated MiniBooNE neutrino oscillation results with increased data and new background studies, Phys. Rev. D 103 (2021) 052002 [arXiv:2006.16883] [INSPIRE].
S. Hagstotz et al., Bounds on light sterile neutrino mass and mixing from cosmology and laboratory searches, arXiv:2003.02289 [INSPIRE].
A.D. Dolgov, Neutrinos and big bang nucleosynthesis, Nuovo Cim. B 117 (2003) 1081 [hep-ph/0203164] [INSPIRE].
S. Gariazzo, Light sterile neutrinos in cosmology, in 17th Lomonosov conference on elementary particle physics, World Scientific, Singapore (2017), pg. 469 [arXiv:1601.01475] [INSPIRE].
J. Lesgourgues and S. Pastor, Massive neutrinos and cosmology, Phys. Rept. 429 (2006) 307 [astro-ph/0603494] [INSPIRE].
Planck collaboration, Planck 2018 results. VI. Cosmological parameters, Astron. Astrophys. 641 (2020) A6 [Erratum ibid. 652 (2021) C4] [arXiv:1807.06209] [INSPIRE].
M. Archidiacono et al., Pseudoscalar-sterile neutrino interactions: reconciling the cosmos with neutrino oscillations, JCAP 08 (2016) 067 [arXiv:1606.07673] [INSPIRE].
S. Razzaque and A.Y. Smirnov, Searching for sterile neutrinos in ice, JHEP 07 (2011) 084 [arXiv:1104.1390] [INSPIRE].
S. Razzaque and A.Y. Smirnov, Searches for sterile neutrinos with IceCube DeepCore, Phys. Rev. D 85 (2012) 093010 [arXiv:1203.5406] [INSPIRE].
ANTARES collaboration, ANTARES: the first undersea neutrino telescope, Nucl. Instrum. Meth. A 656 (2011) 11 [arXiv:1104.1607] [INSPIRE].
KM3NeT collaboration, Determining the neutrino mass ordering and oscillation parameters with KM3NeT/ORCA, arXiv:2103.09885 [INSPIRE].
J.A.B. Coelho, OscProb, https://github.com/joaoabcoelho/OscProb.
M. Maltoni and T. Schwetz, Sterile neutrino oscillations after first MiniBooNE results, Phys. Rev. D 76 (2007) 093005 [arXiv:0705.0107] [INSPIRE].
KM3NeT collaboration, gSeaGen: the KM3NeT GENIE-based code for neutrino telescopes, Comput. Phys. Commun. 256 (2020) 107477 [arXiv:2003.14040] [INSPIRE].
C. Andreopoulos et al., The GENIE neutrino Monte Carlo generator, Nucl. Instrum. Meth. A 614 (2010) 87 [arXiv:0905.2517] [INSPIRE].
A.G. Tsirigotis, A. Leisos and S.E. Tzamarias, HOU Reconstruction & Simulation (HOURS): a complete simulation and reconstruction package for very large volume underwater neutrino telescopes, Nucl. Instrum. Meth. A 626-627 (2011) S185 [INSPIRE].
GEANT4 collaboration, GEANT4 — a simulation toolkit, Nucl. Instrum. Meth. A 506 (2003) 250 [INSPIRE].
M. Honda, M. Sajjad Athar, T. Kajita, K. Kasahara and S. Midorikawa, Atmospheric neutrino flux calculation using the NRLMSISE-00 atmospheric model, Phys. Rev. D 92 (2015) 023004 [arXiv:1502.03916] [INSPIRE].
Y. Becherini, A. Margiotta, M. Sioli and M. Spurio, A parameterisation of single and multiple muons in the deep water or ice, Astropart. Phys. 25 (2006) 1 [hep-ph/0507228] [INSPIRE].
G. Carminati, A. Margiotta and M. Spurio, Atmospheric MUons from PArametric formulas: a fast GEnerator for neutrino telescopes (MUPAGE), Comput. Phys. Commun. 179 (2008) 915 [arXiv:0802.0562] [INSPIRE].
ANTARES collaboration, Monte Carlo simulations for the ANTARES underwater neutrino telescope, JCAP 01 (2021) 064 [arXiv:2010.06621] [INSPIRE].
S. Bourret, Neutrino oscillations and earth tomography with KM3NeT-ORCA, Ph.D. thesis, APC, Paris, France (2018).
S. Adrián-Martínez et al., Intrinsic limits on resolutions in muon- and electron-neutrino charged-current events in the KM3NeT/ORCA detector, JHEP 05 (2017) 008 [arXiv:1612.05621] [INSPIRE].
R.J. Barlow and C. Beeston, Fitting using finite Monte Carlo samples, Comput. Phys. Commun. 77 (1993) 219 [INSPIRE].
I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP, and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].
A.M. Dziewonski and D.L. Anderson, Preliminary reference earth model, Phys. Earth Plan. Int. 25 (1981) 297.
ANTARES collaboration, Measuring the atmospheric neutrino oscillation parameters and constraining the 3 + 1 neutrino model with ten years of ANTARES data, JHEP 06 (2019) 113 [arXiv:1812.08650] [INSPIRE].
IceCube collaboration, Search for sterile neutrino mixing using three years of IceCube DeepCore data, Phys. Rev. D 95 (2017) 112002 [arXiv:1702.05160] [INSPIRE].
G. Cowan, K. Cranmer, E. Gross and O. Vitells, Asymptotic formulae for likelihood-based tests of new physics, Eur. Phys. J. C 71 (2011) 1554 [Erratum ibid. 73 (2013) 2501] [arXiv:1007.1727] [INSPIRE].
G.D. Barr, T.K. Gaisser, S. Robbins and T. Stanev, Uncertainties in atmospheric neutrino fluxes, Phys. Rev. D 74 (2006) 094009 [astro-ph/0611266] [INSPIRE].
Super-Kamiokande collaboration, Limits on sterile neutrino mixing using atmospheric neutrinos in Super-Kamiokande, Phys. Rev. D 91 (2015) 052019 [arXiv:1410.2008] [INSPIRE].
KM3NeT, ANTARES collaboration, Search for sterile neutrinos with KM3NeT/ORCA, PoS ICRC2019 (2021) 870 [INSPIRE].
MINOS+ and Daya Bay collaborations, Improved constraints on sterile neutrino mixing from disappearance searches in the MINOS, MINOS+, Daya Bay, and Bugey-3 experiments, Phys. Rev. Lett. 125 (2020) 071801 [arXiv:2002.00301] [INSPIRE].
IceCube collaboration, Searching for eV-scale sterile neutrinos with eight years of atmospheric neutrinos at the IceCube neutrino telescope, Phys. Rev. D 102 (2020) 052009 [arXiv:2005.12943] [INSPIRE].
STEREO collaboration, Improved sterile neutrino constraints from the STEREO experiment with 179 days of reactor-on data, Phys. Rev. D 102 (2020) 052002 [arXiv:1912.06582] [INSPIRE].
A.P. Serebrov et al., Search for sterile neutrinos with the neutrino-4 experiment and measurement results, Phys. Rev. D 104 (2021) 032003 [arXiv:2005.05301] [INSPIRE].
J.M. Berryman and P. Huber, Sterile neutrinos and the global reactor antineutrino dataset, JHEP 01 (2021) 167 [arXiv:2005.01756] [INSPIRE].
B. Armbruster et al., KARMEN limits on νe → ντ oscillations in two neutrino and three neutrino mixing schemes, Phys. Rev. C 57 (1998) 3414 [hep-ex/9801007] [INSPIRE].
NOMAD collaboration, Search for νμ → νe oscillations in the NOMAD experiment, Phys. Lett. B 570 (2003) 19 [hep-ex/0306037] [INSPIRE].
Author information
Authors and Affiliations
Consortia
Corresponding authors
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2107.00344
Deceased (G. Androulakis)
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
The KM3NeT collaboration., Aiello, S., Albert, A. et al. Sensitivity to light sterile neutrino mixing parameters with KM3NeT/ORCA. J. High Energ. Phys. 2021, 180 (2021). https://doi.org/10.1007/JHEP10(2021)180
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2021)180
Keywords
- Neutrino Detectors and Telescopes (experiments)
- Oscillation