Skip to main content

Localized Kaluza-Klein 6-brane

A preprint version of the article is available at arXiv.

Abstract

We study the membrane wrapping mode corrections to the Kaluza-Klein (KK) 6-brane in eleven dimensions. We examine the localized KK6-brane in the extended space in E7(7) exceptional field theory. In order to discuss the physical origin of the localization in the extended space, we consider a probe M2-brane in eleven dimensions. We show that a three-dimensional \( \mathcal{N} \) = 4 gauge theory is naturally interpreted as a membrane generalization of the two-dimensional \( \mathcal{N} \) = (4, 4) gauged linear sigma model for the fundamental string. We point out that the vector field in the \( \mathcal{N} \) = 4 model is identified as a dual coordinate of the KK6-brane geometry. We find that the BPS vortex in the gauge theory gives rise to the violation of the isometry along the dual direction. We then show that the vortex corrections are regarded as an instanton effect in M-theory induced by the probe M2-brane wrapping around the M-circle.

References

  1. R. Gregory, J.A. Harvey and G.W. Moore, Unwinding strings and t duality of Kaluza-Klein and h monopoles, Adv. Theor. Math. Phys. 1 (1997) 283 [hep-th/9708086] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  2. T.H. Buscher, A Symmetry of the String Background Field Equations, Phys. Lett. B 194 (1987) 59 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  3. T.H. Buscher, Path Integral Derivation of Quantum Duality in Nonlinear Sigma Models, Phys. Lett. B 201 (1988) 466 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. X.G. Wen and E. Witten, World Sheet Instantons and the Peccei-Quinn Symmetry, Phys. Lett. B 166 (1986) 397 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. D. Tong, NS5-branes, T duality and world sheet instantons, JHEP 07 (2002) 013 [hep-th/0204186] [INSPIRE].

    ADS  Article  Google Scholar 

  6. J.A. Harvey and S. Jensen, Worldsheet instanton corrections to the Kaluza-Klein monopole, JHEP 10 (2005) 028 [hep-th/0507204] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  7. S. Jensen, The KK-Monopole/NS5-Brane in Doubled Geometry, JHEP 07 (2011) 088 [arXiv:1106.1174] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. T. Kimura and S. Sasaki, Worldsheet instanton corrections to \( {5}_2^2 \)-brane geometry, JHEP 08 (2013) 126 [arXiv:1305.4439] [INSPIRE].

  9. C. Hull and B. Zwiebach, Double Field Theory, JHEP 09 (2009) 099 [arXiv:0904.4664] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. W. Siegel, Two vierbein formalism for string inspired axionic gravity, Phys. Rev. D 47 (1993) 5453 [hep-th/9302036] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  11. W. Siegel, Superspace duality in low-energy superstrings, Phys. Rev. D 48 (1993) 2826 [hep-th/9305073] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  12. W. Siegel, Manifest duality in low-energy superstrings, in International Conference on Strings 93, (1993) [hep-th/9308133] [INSPIRE].

  13. D.S. Berman and F.J. Rudolph, Branes are Waves and Monopoles, JHEP 05 (2015) 015 [arXiv:1409.6314] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. I. Bakhmatov, A. Kleinschmidt and E.T. Musaev, Non-geometric branes are DFT monopoles, JHEP 10 (2016) 076 [arXiv:1607.05450] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. T. Kimura, S. Sasaki and K. Shiozawa, Worldsheet Instanton Corrections to Five-branes and Waves in Double Field Theory, JHEP 07 (2018) 001 [arXiv:1803.11087] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  16. O. Hohm and H. Samtleben, Exceptional Form of D = 11 Supergravity, Phys. Rev. Lett. 111 (2013) 231601 [arXiv:1308.1673] [INSPIRE].

    ADS  Article  Google Scholar 

  17. O. Hohm and H. Samtleben, Exceptional Field Theory I: E6(6) covariant Form of M-theory and Type IIB, Phys. Rev. D 89 (2014) 066016 [arXiv:1312.0614] [INSPIRE].

  18. O. Hohm and H. Samtleben, Exceptional field theory. II. E7(7), Phys. Rev. D 89 (2014) 066017 [arXiv:1312.4542] [INSPIRE].

  19. O. Hohm and H. Samtleben, Exceptional field theory. III. E8(8), Phys. Rev. D 90 (2014) 066002 [arXiv:1406.3348] [INSPIRE].

  20. A. Abzalov, I. Bakhmatov and E.T. Musaev, Exceptional field theory: SO(5, 5), JHEP 06 (2015) 088 [arXiv:1504.01523] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  21. E.T. Musaev, Exceptional field theory: SL(5), JHEP 02 (2016) 012 [arXiv:1512.02163] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. D.S. Berman, C.D.A. Blair, E. Malek and F.J. Rudolph, An action for F-theory: SL(2)ℝ+ exceptional field theory, Class. Quant. Grav. 33 (2016) 195009 [arXiv:1512.06115] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. G. Bossard, F. Ciceri, G. Inverso, A. Kleinschmidt and H. Samtleben, E9 exceptional field theory. Part I. The potential, JHEP 03 (2019) 089 [arXiv:1811.04088] [INSPIRE].

  24. G. Bossard, F. Ciceri, G. Inverso, A. Kleinschmidt and H. Samtleben, E9 exceptional field theory. Part II. The complete dynamics, JHEP 05 (2021) 107 [arXiv:2103.12118] [INSPIRE].

  25. G. Bossard, A. Kleinschmidt and E. Sezgin, On supersymmetric E11 exceptional field theory, JHEP 10 (2019) 165 [arXiv:1907.02080] [INSPIRE].

    ADS  Article  Google Scholar 

  26. D.S. Berman and C.D.A. Blair, The Geometry, Branes and Applications of Exceptional Field Theory, Int. J. Mod. Phys. A 35 (2020) 2030014 [arXiv:2006.09777] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  27. O. Hohm, C. Hull and B. Zwiebach, Generalized metric formulation of double field theory, JHEP 08 (2010) 008 [arXiv:1006.4823] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. J. Berkeley, D.S. Berman and F.J. Rudolph, Strings and Branes are Waves, JHEP 06 (2014) 006 [arXiv:1403.7198] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  29. C.D.A. Blair, Doubled strings, negative strings and null waves, JHEP 11 (2016) 042 [arXiv:1608.06818] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  30. D. Lüst, E. Plauschinn and V. Vall Camell, Unwinding strings in semi-flatland, JHEP 07 (2017) 027 [arXiv:1706.00835] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  31. D.S. Berman, E.T. Musaev and R. Otsuki, Exotic Branes in Exceptional Field Theory: E7(7) and Beyond, JHEP 12 (2018) 053 [arXiv:1806.00430] [INSPIRE].

    ADS  Article  Google Scholar 

  32. D.S. Berman, H. Godazgar, M.J. Perry and P. West, Duality Invariant Actions and Generalised Geometry, JHEP 02 (2012) 108 [arXiv:1111.0459] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  33. A. Coimbra, C. Strickland-Constable and D. Waldram, Ed(d) ×+ generalised geometry, connections and M-theory, JHEP 02 (2014) 054 [arXiv:1112.3989] [INSPIRE].

    ADS  Article  Google Scholar 

  34. K. Okuyama, Linear sigma models of H and KK monopoles, JHEP 08 (2005) 089 [hep-th/0508097] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  35. K. Becker, M. Becker and A. Strominger, Five-branes, membranes and nonperturbative string theory, Nucl. Phys. B 456 (1995) 130 [hep-th/9507158] [INSPIRE].

    ADS  Article  Google Scholar 

  36. J.A. Harvey and G.W. Moore, Superpotentials and membrane instantons, hep-th/9907026 [INSPIRE].

  37. A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. T. Kimura and S. Sasaki, Gauged Linear Sigma Model for Exotic Five-brane, Nucl. Phys. B 876 (2013) 493 [arXiv:1304.4061] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  39. K.A. Intriligator and N. Seiberg, Mirror symmetry in three-dimensional gauge theories, Phys. Lett. B 387 (1996) 513 [hep-th/9607207] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  40. A. Kapustin, B. Willett and I. Yaakov, Nonperturbative Tests of Three-Dimensional Dualities, JHEP 10 (2010) 013 [arXiv:1003.5694] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  41. J. de Boer, K. Hori, H. Ooguri and Y. Oz, Mirror symmetry in three-dimensional gauge theories, quivers and D-branes, Nucl. Phys. B 493 (1997) 101 [hep-th/9611063] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  42. A. Hanany and E. Witten, Type IIB superstrings, BPS monopoles, and three-dimensional gauge dynamics, Nucl. Phys. B 492 (1997) 152 [hep-th/9611230] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  43. M. Bullimore, T. Dimofte and D. Gaiotto, The Coulomb Branch of 3d \( \mathcal{N} \) = 4 Theories, Commun. Math. Phys. 354 (2017) 671 [arXiv:1503.04817] [INSPIRE].

  44. R. Brooks and S.J. Gates Jr., Extended supersymmetry and superBF gauge theories, Nucl. Phys. B 432 (1994) 205 [hep-th/9407147] [INSPIRE].

    ADS  Article  Google Scholar 

  45. J.A. Harvey, S. Lee and S. Murthy, Elliptic genera of ALE and ALF manifolds from gauged linear sigma models, JHEP 02 (2015) 110 [arXiv:1406.6342] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  46. Y. Hiraga and Y. Sato, Localization of the gauged linear sigma model for KK5-branes, PTEP 2021 (2021) 033B06 [arXiv:2011.06919] [INSPIRE].

  47. J. Wess and J. Bagger, Supersymmetry and Supergravity, 2nd edition, Princeton University Press (1992) [INSPIRE].

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shin Sasaki.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2107.10534

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kimura, T., Sasaki, S. & Shiozawa, K. Localized Kaluza-Klein 6-brane. J. High Energ. Phys. 2021, 113 (2021). https://doi.org/10.1007/JHEP10(2021)113

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2021)113

Keywords

  • p-branes
  • String Duality
  • M-Theory