F.A. Smirnov and A.B. Zamolodchikov, On space of integrable quantum field theories, Nucl. Phys. B 915 (2017) 363 [arXiv:1608.05499] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. Cavaglià, S. Negro, I.M. Szécsényi and R. Tateo, T\( \overline{T} \)-deformed 2D Quantum Field Theories, JHEP 10 (2016) 112 [arXiv:1608.05534] [INSPIRE].
A.B. Zamolodchikov, Expectation value of composite field T\( \overline{T} \) in two-dimensional quantum field theory, hep-th/0401146 [INSPIRE].
K.G. Wilson and J.B. Kogut, The Renormalization group and the ϵ-expansion, Phys. Rept. 12 (1974) 75 [INSPIRE].
ADS
Article
Google Scholar
J. Polchinski, String theory. Vol. 1: An introduction to the bosonic string, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (2007).
S. Dubovsky, V. Gorbenko and M. Mirbabayi, Asymptotic fragility, near AdS2 holography and T\( \overline{T} \), JHEP 09 (2017) 136 [arXiv:1706.06604] [INSPIRE].
S. Dubovsky, V. Gorbenko and G. Hernández-Chifflet, T\( \overline{T} \) partition function from topological gravity, JHEP 09 (2018) 158 [arXiv:1805.07386] [INSPIRE].
L. McGough, M. Mezei and H. Verlinde, Moving the CFT into the bulk with T\( \overline{T} \), JHEP 04 (2018) 010 [arXiv:1611.03470] [INSPIRE].
M.R. Douglas and N.A. Nekrasov, Noncommutative field theory, Rev. Mod. Phys. 73 (2001) 977 [hep-th/0106048] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
R. Conti, S. Negro and R. Tateo, Conserved currents and T\( \overline{T} \)s irrelevant deformations of 2D integrable field theories, JHEP 11 (2019) 120 [arXiv:1904.09141] [INSPIRE].
J. Cardy, The T\( \overline{T} \) deformation of quantum field theory as random geometry, JHEP 10 (2018) 186 [arXiv:1801.06895] [INSPIRE].
J. Kruthoff and O. Parrikar, On the flow of states under T\( \overline{T} \), arXiv:2006.03054 [INSPIRE].
L. Castillejo, R.H. Dalitz and F.J. Dyson, Low’s scattering equation for the charged and neutral scalar theories, Phys. Rev. 101 (1956) 453 [INSPIRE].
G. Hernández-Chifflet, S. Negro and A. Sfondrini, Flow Equations for Generalized T\( \overline{T} \) Deformations, Phys. Rev. Lett. 124 (2020) 200601 [arXiv:1911.12233] [INSPIRE].
C.-N. Yang and C.P. Yang, Thermodynamics of one-dimensional system of bosons with repulsive delta function interaction, J. Math. Phys. 10 (1969) 1115 [INSPIRE].
A.B. Zamolodchikov, Thermodynamic Bethe Ansatz in Relativistic Models. Scaling Three State Potts and Lee-yang Models, Nucl. Phys. B 342 (1990) 695 [INSPIRE].
A.B. Zamolodchikov, Resonance factorized scattering and roaming trajectories, J. Phys. A 39 (2006) 12847 [INSPIRE].
A.B. Zamolodchikov, unpublished.
G. Mussardo and P. Simon, Bosonic type S matrix, vacuum instability and CDD ambiguities, Nucl. Phys. B 578 (2000) 527 [hep-th/9903072] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M.J. Martins, Renormalization group trajectories from resonance factorized S matrices, Phys. Rev. Lett. 69 (1992) 2461 [hep-th/9205024] [INSPIRE].
ADS
Article
Google Scholar
M.J. Martins, Exact resonance A-D-E S matrices and their renormalization group trajectories, Nucl. Phys. B 394 (1993) 339 [hep-th/9208011] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
P. Dorey, C. Dunning and R. Tateo, New families of flows between two-dimensional conformal field theories, Nucl. Phys. B 578 (2000) 699 [hep-th/0001185] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
S. Dubovsky, R. Flauger and V. Gorbenko, Solving the Simplest Theory of Quantum Gravity, JHEP 09 (2012) 133 [arXiv:1205.6805] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
M. Caselle, D. Fioravanti, F. Gliozzi and R. Tateo, Quantisation of the effective string with TBA, JHEP 07 (2013) 071 [arXiv:1305.1278] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
A. LeClair, T\( \overline{T} \) deformation of the Ising model and its ultraviolet completion, arXiv:2107.02230 [INSPIRE].
A. LeClair, Thermodynamics of T\( \overline{T} \) perturbations of some single particle field theories, arXiv:2105.08184 [INSPIRE].
J.L. Cardy, Operator Content of Two-Dimensional Conformally Invariant Theories, Nucl. Phys. B 270 (1986) 186 [INSPIRE].
A.M. Perelomov and Y.B. Zeldovich, Quantum Mechanics, Selected Topics, World Scientific, New York U.S.A. (1998).
Book
Google Scholar
P. Fendley and H. Saleur, Massless integrable quantum field theories and massless scattering in (1 + 1)-dimensions, in Summer School in High-energy Physics and Cosmology (Includes Workshop on Strings, Gravity, and Related Topics, Trieste Italy (1993), pg. 301 [hep-th/9310058] [INSPIRE].
A. Fring, C. Korff and B.J. Schulz, The Ultraviolet behavior of integrable quantum field theories, affine Toda field theory, Nucl. Phys. B 549 (1999) 579 [hep-th/9902011] [INSPIRE].
ADS
Article
Google Scholar
L. Hilfiker and I. Runkel, Existence and uniqueness of solutions to Y-systems and TBA equations, Ann. Henri Poincaré 21 (2019) 941 [arXiv:1708.00001] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
E.L. Allgower and K. Georg, Springer Series in Computational Mathematics. Vol. 13: Numerical continuation methods: an introduction, Springer, Berlin Germany (2012).
P. Dorey and R. Tateo, Excited states by analytic continuation of TBA equations, Nucl. Phys. B 482 (1996) 639 [hep-th/9607167] [INSPIRE].
ADS
MathSciNet
Article
Google Scholar
L.G. Córdova, S. Negro and F.I. Schaposnik, Thermodynamic Bethe Ansatz past turning points: the (eliptic) sinh-Gordon model, to appear.
J.L.F. Barbón and E. Rabinovici, Remarks on the thermodynamic stability of T\( \overline{T} \) deformations, J. Phys. A 53 (2020) 424001 [arXiv:2004.10138] [INSPIRE].
S.R. Coleman, The Fate of the False Vacuum. 1. Semiclassical Theory, Phys. Rev. D 15 (1977) 2929 [Erratum ibid. 16 (1977) 1248] [INSPIRE].
I.Y. Kobzarev, L.B. Okun and M.B. Voloshin, Bubbles in Metastable Vacuum, Yad. Fiz. 20 (1974) 1229 [INSPIRE].
R.J. Eden, P.V. Landshoff, D.I. Olive and J.C. Polkinghorne, The analytic S-matrix, Cambridge University Press, Cambridge U.K. (1966).
MATH
Google Scholar
D. Iagolnitzer, Scattering in quantum field theories: The Axiomatic and constructive approaches, Princeton University Press, Princeton U.S.A. (1994).
MATH
Google Scholar
D. Iagolnitzer, Macrocausality, Physical Region Analyticity and Independence Property in S Matrix Theory, Lect. Notes Math. 449 (1975) 102.
MathSciNet
Article
Google Scholar
A.B. Zamolodchikov, From tricritical Ising to critical Ising by thermodynamic Bethe ansatz, Nucl. Phys. B 358 (1991) 524 [INSPIRE].
A.B. Zamolodchikov and A.B. Zamolodchikov, Massless factorized scattering and sigma models with topological terms, Nucl. Phys. B 379 (1992) 602 [INSPIRE].