Skip to main content

Interactions of two and three mesons including higher partial waves from lattice QCD

A preprint version of the article is available at arXiv.

Abstract

We study two- and three-meson systems composed either of pions or kaons at maximal isospin using Monte Carlo simulations of lattice QCD. Utilizing the stochastic LapH method, we are able to determine hundreds of two- and three-particle energy levels, in nine different momentum frames, with high precision. We fit these levels using the relativistic finite-volume formalism based on a generic effective field theory in order to determine the parameters of the two- and three-particle K-matrices. We find that the statistical precision of our spectra is sufficient to probe not only the dominant s-wave interactions, but also those in d waves. In particular, we determine for the first time a term in the three-particle K-matrix that contains two-particle d waves. We use three Nf = 2 + 1 CLS ensembles with pion masses of 200, 280, and 340 MeV. This allows us to study the chiral dependence of the scattering observables, and compare to the expectations of chiral perturbation theory.

References

  1. S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, M. J. Savage and A. Torok, Multi-Pion Systems in Lattice QCD and the Three-Pion Interaction, Phys. Rev. Lett. 100 (2008) 082004 [arXiv:0710.1827] [INSPIRE].

    ADS  Google Scholar 

  2. B. Hörz and A. Hanlon, Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD, Phys. Rev. Lett. 123 (2019) 142002 [arXiv:1905.04277] [INSPIRE].

    ADS  Google Scholar 

  3. T. D. Blanton, F. Romero-López and S. R. Sharpe, I = 3 Three-Pion Scattering Amplitude from Lattice QCD, Phys. Rev. Lett. 124 (2020) 032001 [arXiv:1909.02973] [INSPIRE].

    ADS  Google Scholar 

  4. M. Mai, M. Döring, C. Culver and A. Alexandru, Three-body unitarity versus finite-volume π+ π+ π+ spectrum from lattice QCD, Phys. Rev. D 101 (2020) 054510 [arXiv:1909.05749] [INSPIRE].

    ADS  Google Scholar 

  5. C. Culver, M. Mai, R. Brett, A. Alexandru and M. Döring, Three pion spectrum in the I = 3 channel from lattice QCD, Phys. Rev. D 101 (2020) 114507 [arXiv:1911.09047] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  6. M. Fischer, B. Kostrzewa, L. Liu, F. Romero-López, M. Ueding and C. Urbach, Scattering of two and three physical pions at maximal isospin from lattice QCD, Eur. Phys. J. C 81 (2021) 436 [arXiv:2008.03035] [INSPIRE].

    ADS  Google Scholar 

  7. Hadron Spectrum collaboration, Energy-Dependent π+ π+ π+ Scattering Amplitude from QCD, Phys. Rev. Lett. 126 (2021) 012001 [arXiv:2009.04931] [INSPIRE].

  8. A. Alexandru et al., Finite-volume energy spectrum of the K K K system, Phys. Rev. D 102 (2020) 114523 [arXiv:2009.12358] [INSPIRE].

    ADS  Google Scholar 

  9. NPLQCD and QCDSF collaborations, Charged multihadron systems in lattice QCD+QED, Phys. Rev. D 103 (2021) 054504 [arXiv:2003.12130] [INSPIRE].

  10. R. Brett, C. Culver, M. Mai, A. Alexandru, M. Döring and F. X. Lee, Three-body interactions from the finite-volume QCD spectrum, Phys. Rev. D 104 (2021) 014501 [arXiv:2101.06144] [INSPIRE].

    ADS  Google Scholar 

  11. C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83 (2011) 114505 [arXiv:1104.3870] [INSPIRE].

    ADS  Google Scholar 

  12. Hadron Spectrum collaboration, A Novel quark-field creation operator construction for hadronic physics in lattice QCD, Phys. Rev. D 80 (2009) 054506 [arXiv:0905.2160] [INSPIRE].

  13. K. Polejaeva and A. Rusetsky, Three particles in a finite volume, Eur. Phys. J. A 48 (2012) 67 [arXiv:1203.1241] [INSPIRE].

    ADS  Google Scholar 

  14. M. T. Hansen and S. R. Sharpe, Relativistic, model-independent, three-particle quantization condition, Phys. Rev. D 90 (2014) 116003 [arXiv:1408.5933] [INSPIRE].

    ADS  Google Scholar 

  15. M. T. Hansen and S. R. Sharpe, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude, Phys. Rev. D 92 (2015) 114509 [arXiv:1504.04248] [INSPIRE].

    ADS  Google Scholar 

  16. R. A. Briceño, M. T. Hansen and S. R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles, Phys. Rev. D 95 (2017) 074510 [arXiv:1701.07465] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. R. A. Briceño, M. T. Hansen and S. R. Sharpe, Numerical study of the relativistic three-body quantization condition in the isotropic approximation, Phys. Rev. D 98 (2018) 014506 [arXiv:1803.04169] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  18. R. A. Briceño, M. T. Hansen and S. R. Sharpe, Three-particle systems with resonant subprocesses in a finite volume, Phys. Rev. D 99 (2019) 014516 [arXiv:1810.01429] [INSPIRE].

    ADS  Google Scholar 

  19. T. D. Blanton, F. Romero-López and S. R. Sharpe, Implementing the three-particle quantization condition including higher partial waves, JHEP 03 (2019) 106 [arXiv:1901.07095] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. F. Romero-López, S. R. Sharpe, T. D. Blanton, R. A. Briceño and M. T. Hansen, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states, JHEP 10 (2019) 007 [arXiv:1908.02411] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  21. M. T. Hansen, F. Romero-López and S. R. Sharpe, Generalizing the relativistic quantization condition to include all three-pion isospin channels, JHEP 07 (2020) 047 [Erratum ibid. 02 (2021) 014] [arXiv:2003.10974] [INSPIRE].

  22. T. D. Blanton and S. R. Sharpe, Relativistic three-particle quantization condition for nondegenerate scalars, Phys. Rev. D 103 (2021) 054503 [arXiv:2011.05520] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  23. T. D. Blanton and S. R. Sharpe, Alternative derivation of the relativistic three-particle quantization condition, Phys. Rev. D 102 (2020) 054520 [arXiv:2007.16188] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. M. T. Hansen, F. Romero-López and S. R. Sharpe, Decay amplitudes to three hadrons from finite-volume matrix elements, JHEP 04 (2021) 113 [arXiv:2101.10246] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  25. T. D. Blanton and S. R. Sharpe, Three-particle finite-volume formalism for π+ π+ K + and related systems, Phys. Rev. D 104 (2021) 034509 [arXiv:2105.12094] [INSPIRE].

    ADS  Google Scholar 

  26. H.-W. Hammer, J.-Y. Pang and A. Rusetsky, Three-particle quantization condition in a finite volume: 1. The role of the three-particle force, JHEP 09 (2017) 109 [arXiv:1706.07700] [INSPIRE].

  27. H. W. Hammer, J. Y. Pang and A. Rusetsky, Three particle quantization condition in a finite volume: 2. general formalism and the analysis of data, JHEP 10 (2017) 115 [arXiv:1707.02176] [INSPIRE].

  28. M. Döring, H. W. Hammer, M. Mai, J. Y. Pang, t. A. Rusetsky and J. Wu, Three-body spectrum in a finite volume: the role of cubic symmetry, Phys. Rev. D 97 (2018) 114508 [arXiv:1802.03362] [INSPIRE].

  29. F. Romero-López, A. Rusetsky and C. Urbach, Two- and three-body interactions in φ4 theory from lattice simulations, Eur. Phys. J. C 78 (2018) 846 [arXiv:1806.02367] [INSPIRE].

    ADS  Google Scholar 

  30. J.-Y. Pang, J.-J. Wu, H. W. Hammer, U.-G. Meißner and A. Rusetsky, Energy shift of the three-particle system in a finite volume, Phys. Rev. D 99 (2019) 074513 [arXiv:1902.01111] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  31. F. Romero-López, A. Rusetsky, N. Schlage and C. Urbach, Relativistic N -particle energy shift in finite volume, JHEP 02 (2021) 060 [arXiv:2010.11715] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  32. F. Müller and A. Rusetsky, On the three-particle analog of the Lellouch-Lüscher formula, JHEP 03 (2021) 152 [arXiv:2012.13957] [INSPIRE].

    ADS  Google Scholar 

  33. F. Müller, T. Yu and A. Rusetsky, Finite-volume energy shift of the three-pion ground state, Phys. Rev. D 103 (2021) 054506 [arXiv:2011.14178] [INSPIRE].

    ADS  Google Scholar 

  34. M. Mai and M. Döring, Three-body Unitarity in the Finite Volume, Eur. Phys. J. A 53 (2017) 240 [arXiv:1709.08222] [INSPIRE].

    ADS  Google Scholar 

  35. M. Mai and M. Döring, Finite-Volume Spectrum of π+ π+ and π+ π+ π+ Systems, Phys. Rev. Lett. 122 (2019) 062503 [arXiv:1807.04746] [INSPIRE].

    ADS  Google Scholar 

  36. P. Guo and V. Gasparian, A solvable three-body model in finite volume, Phys. Lett. B 774 (2017) 441 [arXiv:1701.00438] [INSPIRE].

    ADS  MATH  Google Scholar 

  37. P. Klos, S. König, H. W. Hammer, J. E. Lynn and A. Schwenk, Signatures of few-body resonances in finite volume, Phys. Rev. C 98 (2018) 034004 [arXiv:1805.02029] [INSPIRE].

    ADS  Google Scholar 

  38. P. Guo, M. Döring and A. P. Szczepaniak, Variational approach to N -body interactions in finite volume, Phys. Rev. D 98 (2018) 094502 [arXiv:1810.01261] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  39. J.-Y. Pang, J.-J. Wu and L.-S. Geng, DDK system in finite volume, Phys. Rev. D 102 (2020) 114515 [arXiv:2008.13014] [INSPIRE].

    ADS  Google Scholar 

  40. M. T. Hansen and S. R. Sharpe, Lattice QCD and Three-particle Decays of Resonances, Ann. Rev. Nucl. Part. Sci. 69 (2019) 65 [arXiv:1901.00483] [INSPIRE].

    ADS  Google Scholar 

  41. M. Mai, M. Döring and A. Rusetsky, Multi-particle systems on the lattice and chiral extrapolations: a brief review, Eur. Phys. J. ST 230 (2021) 1623 [arXiv:2103.00577] [INSPIRE].

    Google Scholar 

  42. S. Basak et al., Group-theoretical construction of extended baryon operators in lattice QCD, Phys. Rev. D 72 (2005) 094506 [hep-lat/0506029] [INSPIRE].

    ADS  Google Scholar 

  43. Lattice Hadron Physics (LHPC) collaboration, Clebsch-Gordan construction of lattice interpolating fields for excited baryons, Phys. Rev. D 72 (2005) 074501 [hep-lat/0508018] [INSPIRE].

  44. C. Morningstar et al., Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD, Phys. Rev. D 88 (2013) 014511 [arXiv:1303.6816] [INSPIRE].

    ADS  Google Scholar 

  45. A. J. Woss, C. E. Thomas, J. J. Dudek, R. G. Edwards and D. J. Wilson, b1 resonance in coupled πω, πφ scattering from lattice QCD, Phys. Rev. D 100 (2019) 054506 [arXiv:1904.04136] [INSPIRE].

    ADS  Google Scholar 

  46. J. Foley, K. Jimmy Juge, A. O’Cais, M. Peardon, S. M. Ryan and J.-I. Skullerud, Practical all-to-all propagators for lattice QCD, Comput. Phys. Commun. 172 (2005) 145 [hep-lat/0505023] [INSPIRE].

    ADS  Google Scholar 

  47. A. Hartono et al., Identifying cost-effective common subexpressions to reduce operation count in tensor contraction evaluations, in Computational Science — ICCS 2006, V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot and J. Dongarra eds., Berlin, Heidelberg, pp. 267–275, Springer Berlin Heidelberg (2006).

  48. B. Hörz et al., Two-nucleon S-wave interactions at the SU(3) flavor-symmetric point with \( {m}_{ud}\simeq {m}_s^{\mathrm{phys}} \): A first lattice QCD calculation with the stochastic Laplacian Heaviside method, Phys. Rev. C 103 (2021) 014003 [arXiv:2009.11825] [INSPIRE].

    ADS  Google Scholar 

  49. M. Bruno et al., Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively improved Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982] [INSPIRE].

    ADS  Google Scholar 

  50. M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles, Phys. Rev. D 95 (2017) 074504 [arXiv:1608.08900] [INSPIRE].

    ADS  Google Scholar 

  51. M. Cè et al., The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle, in preparation (2021).

  52. M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  53. C. Andersen, J. Bulava, B. Hörz and C. Morningstar, The I = 1 pion-pion scattering amplitude and timelike pion form factor from Nf = 2 + 1 lattice QCD, Nucl. Phys. B 939 (2019) 145 [arXiv:1808.05007] [INSPIRE].

    ADS  MATH  Google Scholar 

  54. A. Gérardin et al., The leading hadronic contribution to (g − 2)μ from lattice QCD with Nf = 2 + 1 flavours of O(a) improved Wilson quarks, Phys. Rev. D 100 (2019) 014510 [arXiv:1904.03120] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. C. Michael, Adjoint Sources in Lattice Gauge Theory, Nucl. Phys. B 259 (1985) 58 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  56. M. Lüscher and U. Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation, Nucl. Phys. B 339 (1990) 222 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  57. B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer, On the generalized eigenvalue method for energies and matrix elements in lattice field theory, JHEP 04 (2009) 094 [arXiv:0902.1265] [INSPIRE].

    Google Scholar 

  58. M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].

  59. M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  60. K. Rummukainen and S. A. Gottlieb, Resonance scattering phase shifts on a nonrest frame lattice, Nucl. Phys. B 450 (1995) 397 [hep-lat/9503028] [INSPIRE].

    ADS  Google Scholar 

  61. C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Finite-volume effects for two-hadron states in moving frames, Nucl. Phys. B 727 (2005) 218 [hep-lat/0507006] [INSPIRE].

  62. J. R. Green, A. D. Hanlon, P. M. Junnarkar and H. Wittig, Weakly bound H dibaryon from SU(3)-flavor-symmetric QCD, arXiv:2103.01054 [INSPIRE].

  63. C. Morningstar et al., Estimating the two-particle K-matrix for multiple partial waves and decay channels from finite-volume energies, Nucl. Phys. B 924 (2017) 477 [arXiv:1707.05817] [INSPIRE].

    ADS  MATH  Google Scholar 

  64. D. Toussaint and W. Freeman, Sample size effects in multivariate fitting of correlated data, arXiv:0808.2211 [INSPIRE].

  65. F. J. Yndurain, R. Garcia-Martin and J. R. Pelaez, Experimental status of the ππ isoscalar S wave at low energy: f0(600) pole and scattering length, Phys. Rev. D 76 (2007) 074034 [hep-ph/0701025] [INSPIRE].

  66. R. Kaminski, J. R. Pelaez and F. J. Yndurain, The Pion-pion scattering amplitude. III. Improving the analysis with forward dispersion relations and Roy equations, Phys. Rev. D 77 (2008) 054015 [arXiv:0710.1150] [INSPIRE].

  67. J. J. Dudek, R. G. Edwards and C. E. Thomas, S and D-wave phase shifts in isospin-2 ππ scattering from lattice QCD, Phys. Rev. D 86 (2012) 034031 [arXiv:1203.6041] [INSPIRE].

    ADS  Google Scholar 

  68. J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  69. Flavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].

  70. NPLQCD collaboration, The I = 2 ππ S-wave Scattering Phase Shift from Lattice QCD, Phys. Rev. D 85 (2012) 034505 [arXiv:1107.5023] [INSPIRE].

  71. F. J. Yndurain, Low-energy pion physics, hep-ph/0212282 [INSPIRE].

  72. J.-W. Chen, D. O’Connell, R. S. Van de Water and A. Walker-Loud, Ginsparg-Wilson pions scattering on a staggered sea, Phys. Rev. D 73 (2006) 074510 [hep-lat/0510024] [INSPIRE].

    ADS  Google Scholar 

  73. J.-W. Chen, D. O’Connell and A. Walker-Loud, Two Meson Systems with Ginsparg-Wilson Valence Quarks, Phys. Rev. D 75 (2007) 054501 [hep-lat/0611003] [INSPIRE].

    ADS  Google Scholar 

  74. A. Roessl, Pion kaon scattering near the threshold in chiral SU(2) perturbation theory, Nucl. Phys. B 555 (1999) 507 [hep-ph/9904230] [INSPIRE].

  75. Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].

  76. X. Feng, K. Jansen and D. B. Renner, The π+ π+ scattering length from maximally twisted mass lattice QCD, Phys. Lett. B 684 (2010) 268 [arXiv:0909.3255] [INSPIRE].

    ADS  Google Scholar 

  77. ETM collaboration, Hadron-hadron interactions from Nf = 2 + 1 + 1 lattice QCD: isospin-2 ππ scattering length, JHEP 09 (2015) 109 [arXiv:1506.00408] [INSPIRE].

  78. C. Culver, M. Mai, A. Alexandru, M. Döring and F. X. Lee, Pion scattering in the isospin I = 2 channel from elongated lattices, Phys. Rev. D 100 (2019) 034509 [arXiv:1905.10202] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  79. M. Mai, C. Culver, A. Alexandru, M. Döring and F. X. Lee, Cross-channel study of pion scattering from lattice QCD, Phys. Rev. D 100 (2019) 114514 [arXiv:1908.01847] [INSPIRE].

    ADS  Google Scholar 

  80. J. Bulava, B. Fahy, B. Hörz, K. J. Juge, C. Morningstar and C. H. Wong, I = 1 and I = 2 π − π scattering phase shifts from Nf = 2 + 1 lattice QCD, Nucl. Phys. B 910 (2016) 842 [arXiv:1604.05593] [INSPIRE].

    ADS  MATH  Google Scholar 

  81. CP-PACS collaboration, I = 2 ππ scattering phase shift with two flavors of O(a) improved dynamical quarks, Phys. Rev. D 70 (2004) 074513 [hep-lat/0402025] [INSPIRE].

  82. NPLQCD collaboration, I = 2 ππ scattering from fully-dynamical mixed-action lattice QCD, Phys. Rev. D 73 (2006) 054503 [hep-lat/0506013] [INSPIRE].

  83. S. R. Beane et al., Precise Determination of the I = 2 ππ Scattering Length from Mixed-Action Lattice QCD, Phys. Rev. D 77 (2008) 014505 [arXiv:0706.3026] [INSPIRE].

    ADS  Google Scholar 

  84. T. Yagi, S. Hashimoto, O. Morimatsu and M. Ohtani, I = 2 π-π scattering length with dynamical overlap fermion, arXiv:1108.2970 [INSPIRE].

  85. Z. Fu, Lattice QCD study of the s-wave ππ scattering lengths in the I = 0 and 2 channels, Phys. Rev. D 87 (2013) 074501 [arXiv:1303.0517] [INSPIRE].

    ADS  Google Scholar 

  86. PACS-CS collaboration, Scattering lengths for two pseudoscalar meson systems, Phys. Rev. D 89 (2014) 054502 [arXiv:1311.7226] [INSPIRE].

  87. RBC and UKQCD collaborations, Lattice determination of I = 0 and 2 ππ scattering phase shifts with a physical pion mass, arXiv:2103.15131 [INSPIRE].

  88. J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards and C. E. Thomas, The phase-shift of isospin-2 ππ scattering from lattice QCD, Phys. Rev. D 83 (2011) 071504 [arXiv:1011.6352] [INSPIRE].

    ADS  Google Scholar 

  89. G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].

    ADS  Google Scholar 

  90. J. R. Pelaez and F. J. Yndurain, The Pion-pion scattering amplitude, Phys. Rev. D 71 (2005) 074016 [hep-ph/0411334] [INSPIRE].

    ADS  Google Scholar 

  91. R. Kaminski, J. R. Pelaez and F. J. Yndurain, The pion-pion scattering amplitude. II. Improved analysis above \( \overline{K}K \) threshold, Phys. Rev. D 74 (2006) 014001 [Erratum ibid. 74 (2006) 079903] [hep-ph/0603170] [INSPIRE].

  92. R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira and F. J. Yndurain, The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV, Phys. Rev. D 83 (2011) 074004 [arXiv:1102.2183] [INSPIRE].

  93. J. Nebreda, J. R. Pelaez and G. Rios, Chiral extrapolation of pion-pion scattering phase shifts within standard and unitarized Chiral Perturbation Theory, Phys. Rev. D 83 (2011) 094011 [arXiv:1101.2171] [INSPIRE].

    ADS  Google Scholar 

  94. NPLQCD collaboration, The K + K + scattering length from lattice QCD, Phys. Rev. D 77 (2008) 094507 [arXiv:0709.1169] [INSPIRE].

  95. C. Helmes et al., Hadron-Hadron Interactions from Nf = 2 + 1 + 1 lattice QCD: Isospin-1 KK scattering length, Phys. Rev. D 96 (2017) 034510 [arXiv:1703.04737] [INSPIRE].

    ADS  Google Scholar 

  96. A. W. Jackura, R. A. Briceño, S. M. Dawid, M. H. E. Islam and C. McCarty, Solving relativistic three-body integral equations in the presence of bound states, Phys. Rev. D 104 (2021) 014507 [arXiv:2010.09820] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Romero-López.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2106.05590

Supplementary Information

ESM 1

(ZIP 5453 kb)

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Blanton, T.D., Hanlon, A.D., Hörz, B. et al. Interactions of two and three mesons including higher partial waves from lattice QCD. J. High Energ. Phys. 2021, 23 (2021). https://doi.org/10.1007/JHEP10(2021)023

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2021)023

Keywords

  • Lattice QCD
  • Scattering Amplitudes