S. R. Beane, W. Detmold, T. C. Luu, K. Orginos, M. J. Savage and A. Torok, Multi-Pion Systems in Lattice QCD and the Three-Pion Interaction, Phys. Rev. Lett. 100 (2008) 082004 [arXiv:0710.1827] [INSPIRE].
ADS
Google Scholar
B. Hörz and A. Hanlon, Two- and three-pion finite-volume spectra at maximal isospin from lattice QCD, Phys. Rev. Lett. 123 (2019) 142002 [arXiv:1905.04277] [INSPIRE].
ADS
Google Scholar
T. D. Blanton, F. Romero-López and S. R. Sharpe, I = 3 Three-Pion Scattering Amplitude from Lattice QCD, Phys. Rev. Lett. 124 (2020) 032001 [arXiv:1909.02973] [INSPIRE].
ADS
Google Scholar
M. Mai, M. Döring, C. Culver and A. Alexandru, Three-body unitarity versus finite-volume π+ π+ π+ spectrum from lattice QCD, Phys. Rev. D 101 (2020) 054510 [arXiv:1909.05749] [INSPIRE].
ADS
Google Scholar
C. Culver, M. Mai, R. Brett, A. Alexandru and M. Döring, Three pion spectrum in the I = 3 channel from lattice QCD, Phys. Rev. D 101 (2020) 114507 [arXiv:1911.09047] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Fischer, B. Kostrzewa, L. Liu, F. Romero-López, M. Ueding and C. Urbach, Scattering of two and three physical pions at maximal isospin from lattice QCD, Eur. Phys. J. C 81 (2021) 436 [arXiv:2008.03035] [INSPIRE].
ADS
Google Scholar
Hadron Spectrum collaboration, Energy-Dependent π+ π+ π+ Scattering Amplitude from QCD, Phys. Rev. Lett. 126 (2021) 012001 [arXiv:2009.04931] [INSPIRE].
A. Alexandru et al., Finite-volume energy spectrum of the K − K − K − system, Phys. Rev. D 102 (2020) 114523 [arXiv:2009.12358] [INSPIRE].
ADS
Google Scholar
NPLQCD and QCDSF collaborations, Charged multihadron systems in lattice QCD+QED, Phys. Rev. D 103 (2021) 054504 [arXiv:2003.12130] [INSPIRE].
R. Brett, C. Culver, M. Mai, A. Alexandru, M. Döring and F. X. Lee, Three-body interactions from the finite-volume QCD spectrum, Phys. Rev. D 104 (2021) 014501 [arXiv:2101.06144] [INSPIRE].
ADS
Google Scholar
C. Morningstar et al., Improved stochastic estimation of quark propagation with Laplacian Heaviside smearing in lattice QCD, Phys. Rev. D 83 (2011) 114505 [arXiv:1104.3870] [INSPIRE].
ADS
Google Scholar
Hadron Spectrum collaboration, A Novel quark-field creation operator construction for hadronic physics in lattice QCD, Phys. Rev. D 80 (2009) 054506 [arXiv:0905.2160] [INSPIRE].
K. Polejaeva and A. Rusetsky, Three particles in a finite volume, Eur. Phys. J. A 48 (2012) 67 [arXiv:1203.1241] [INSPIRE].
ADS
Google Scholar
M. T. Hansen and S. R. Sharpe, Relativistic, model-independent, three-particle quantization condition, Phys. Rev. D 90 (2014) 116003 [arXiv:1408.5933] [INSPIRE].
ADS
Google Scholar
M. T. Hansen and S. R. Sharpe, Expressing the three-particle finite-volume spectrum in terms of the three-to-three scattering amplitude, Phys. Rev. D 92 (2015) 114509 [arXiv:1504.04248] [INSPIRE].
ADS
Google Scholar
R. A. Briceño, M. T. Hansen and S. R. Sharpe, Relating the finite-volume spectrum and the two-and-three-particle S matrix for relativistic systems of identical scalar particles, Phys. Rev. D 95 (2017) 074510 [arXiv:1701.07465] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. A. Briceño, M. T. Hansen and S. R. Sharpe, Numerical study of the relativistic three-body quantization condition in the isotropic approximation, Phys. Rev. D 98 (2018) 014506 [arXiv:1803.04169] [INSPIRE].
ADS
MathSciNet
Google Scholar
R. A. Briceño, M. T. Hansen and S. R. Sharpe, Three-particle systems with resonant subprocesses in a finite volume, Phys. Rev. D 99 (2019) 014516 [arXiv:1810.01429] [INSPIRE].
ADS
Google Scholar
T. D. Blanton, F. Romero-López and S. R. Sharpe, Implementing the three-particle quantization condition including higher partial waves, JHEP 03 (2019) 106 [arXiv:1901.07095] [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Romero-López, S. R. Sharpe, T. D. Blanton, R. A. Briceño and M. T. Hansen, Numerical exploration of three relativistic particles in a finite volume including two-particle resonances and bound states, JHEP 10 (2019) 007 [arXiv:1908.02411] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
M. T. Hansen, F. Romero-López and S. R. Sharpe, Generalizing the relativistic quantization condition to include all three-pion isospin channels, JHEP 07 (2020) 047 [Erratum ibid. 02 (2021) 014] [arXiv:2003.10974] [INSPIRE].
T. D. Blanton and S. R. Sharpe, Relativistic three-particle quantization condition for nondegenerate scalars, Phys. Rev. D 103 (2021) 054503 [arXiv:2011.05520] [INSPIRE].
ADS
MathSciNet
Google Scholar
T. D. Blanton and S. R. Sharpe, Alternative derivation of the relativistic three-particle quantization condition, Phys. Rev. D 102 (2020) 054520 [arXiv:2007.16188] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. T. Hansen, F. Romero-López and S. R. Sharpe, Decay amplitudes to three hadrons from finite-volume matrix elements, JHEP 04 (2021) 113 [arXiv:2101.10246] [INSPIRE].
ADS
MathSciNet
Google Scholar
T. D. Blanton and S. R. Sharpe, Three-particle finite-volume formalism for π+ π+ K + and related systems, Phys. Rev. D 104 (2021) 034509 [arXiv:2105.12094] [INSPIRE].
ADS
Google Scholar
H.-W. Hammer, J.-Y. Pang and A. Rusetsky, Three-particle quantization condition in a finite volume: 1. The role of the three-particle force, JHEP 09 (2017) 109 [arXiv:1706.07700] [INSPIRE].
H. W. Hammer, J. Y. Pang and A. Rusetsky, Three particle quantization condition in a finite volume: 2. general formalism and the analysis of data, JHEP 10 (2017) 115 [arXiv:1707.02176] [INSPIRE].
M. Döring, H. W. Hammer, M. Mai, J. Y. Pang, t. A. Rusetsky and J. Wu, Three-body spectrum in a finite volume: the role of cubic symmetry, Phys. Rev. D 97 (2018) 114508 [arXiv:1802.03362] [INSPIRE].
F. Romero-López, A. Rusetsky and C. Urbach, Two- and three-body interactions in φ4 theory from lattice simulations, Eur. Phys. J. C 78 (2018) 846 [arXiv:1806.02367] [INSPIRE].
ADS
Google Scholar
J.-Y. Pang, J.-J. Wu, H. W. Hammer, U.-G. Meißner and A. Rusetsky, Energy shift of the three-particle system in a finite volume, Phys. Rev. D 99 (2019) 074513 [arXiv:1902.01111] [INSPIRE].
ADS
MathSciNet
Google Scholar
F. Romero-López, A. Rusetsky, N. Schlage and C. Urbach, Relativistic N -particle energy shift in finite volume, JHEP 02 (2021) 060 [arXiv:2010.11715] [INSPIRE].
ADS
MathSciNet
MATH
Google Scholar
F. Müller and A. Rusetsky, On the three-particle analog of the Lellouch-Lüscher formula, JHEP 03 (2021) 152 [arXiv:2012.13957] [INSPIRE].
ADS
Google Scholar
F. Müller, T. Yu and A. Rusetsky, Finite-volume energy shift of the three-pion ground state, Phys. Rev. D 103 (2021) 054506 [arXiv:2011.14178] [INSPIRE].
ADS
Google Scholar
M. Mai and M. Döring, Three-body Unitarity in the Finite Volume, Eur. Phys. J. A 53 (2017) 240 [arXiv:1709.08222] [INSPIRE].
ADS
Google Scholar
M. Mai and M. Döring, Finite-Volume Spectrum of π+ π+ and π+ π+ π+ Systems, Phys. Rev. Lett. 122 (2019) 062503 [arXiv:1807.04746] [INSPIRE].
ADS
Google Scholar
P. Guo and V. Gasparian, A solvable three-body model in finite volume, Phys. Lett. B 774 (2017) 441 [arXiv:1701.00438] [INSPIRE].
ADS
MATH
Google Scholar
P. Klos, S. König, H. W. Hammer, J. E. Lynn and A. Schwenk, Signatures of few-body resonances in finite volume, Phys. Rev. C 98 (2018) 034004 [arXiv:1805.02029] [INSPIRE].
ADS
Google Scholar
P. Guo, M. Döring and A. P. Szczepaniak, Variational approach to N -body interactions in finite volume, Phys. Rev. D 98 (2018) 094502 [arXiv:1810.01261] [INSPIRE].
ADS
MathSciNet
Google Scholar
J.-Y. Pang, J.-J. Wu and L.-S. Geng, DDK system in finite volume, Phys. Rev. D 102 (2020) 114515 [arXiv:2008.13014] [INSPIRE].
ADS
Google Scholar
M. T. Hansen and S. R. Sharpe, Lattice QCD and Three-particle Decays of Resonances, Ann. Rev. Nucl. Part. Sci. 69 (2019) 65 [arXiv:1901.00483] [INSPIRE].
ADS
Google Scholar
M. Mai, M. Döring and A. Rusetsky, Multi-particle systems on the lattice and chiral extrapolations: a brief review, Eur. Phys. J. ST 230 (2021) 1623 [arXiv:2103.00577] [INSPIRE].
Google Scholar
S. Basak et al., Group-theoretical construction of extended baryon operators in lattice QCD, Phys. Rev. D 72 (2005) 094506 [hep-lat/0506029] [INSPIRE].
ADS
Google Scholar
Lattice Hadron Physics (LHPC) collaboration, Clebsch-Gordan construction of lattice interpolating fields for excited baryons, Phys. Rev. D 72 (2005) 074501 [hep-lat/0508018] [INSPIRE].
C. Morningstar et al., Extended hadron and two-hadron operators of definite momentum for spectrum calculations in lattice QCD, Phys. Rev. D 88 (2013) 014511 [arXiv:1303.6816] [INSPIRE].
ADS
Google Scholar
A. J. Woss, C. E. Thomas, J. J. Dudek, R. G. Edwards and D. J. Wilson, b1 resonance in coupled πω, πφ scattering from lattice QCD, Phys. Rev. D 100 (2019) 054506 [arXiv:1904.04136] [INSPIRE].
ADS
Google Scholar
J. Foley, K. Jimmy Juge, A. O’Cais, M. Peardon, S. M. Ryan and J.-I. Skullerud, Practical all-to-all propagators for lattice QCD, Comput. Phys. Commun. 172 (2005) 145 [hep-lat/0505023] [INSPIRE].
ADS
Google Scholar
A. Hartono et al., Identifying cost-effective common subexpressions to reduce operation count in tensor contraction evaluations, in Computational Science — ICCS 2006, V.N. Alexandrov, G.D. van Albada, P.M.A. Sloot and J. Dongarra eds., Berlin, Heidelberg, pp. 267–275, Springer Berlin Heidelberg (2006).
B. Hörz et al., Two-nucleon S-wave interactions at the SU(3) flavor-symmetric point with \( {m}_{ud}\simeq {m}_s^{\mathrm{phys}} \): A first lattice QCD calculation with the stochastic Laplacian Heaviside method, Phys. Rev. C 103 (2021) 014003 [arXiv:2009.11825] [INSPIRE].
ADS
Google Scholar
M. Bruno et al., Simulation of QCD with Nf = 2 + 1 flavors of non-perturbatively improved Wilson fermions, JHEP 02 (2015) 043 [arXiv:1411.3982] [INSPIRE].
ADS
Google Scholar
M. Bruno, T. Korzec and S. Schaefer, Setting the scale for the CLS 2 + 1 flavor ensembles, Phys. Rev. D 95 (2017) 074504 [arXiv:1608.08900] [INSPIRE].
ADS
Google Scholar
M. Cè et al., The hadronic contribution to the running of the electromagnetic coupling and the electroweak mixing angle, in preparation (2021).
M. Lüscher and S. Schaefer, Lattice QCD with open boundary conditions and twisted-mass reweighting, Comput. Phys. Commun. 184 (2013) 519 [arXiv:1206.2809] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Andersen, J. Bulava, B. Hörz and C. Morningstar, The I = 1 pion-pion scattering amplitude and timelike pion form factor from Nf = 2 + 1 lattice QCD, Nucl. Phys. B 939 (2019) 145 [arXiv:1808.05007] [INSPIRE].
ADS
MATH
Google Scholar
A. Gérardin et al., The leading hadronic contribution to (g − 2)μ from lattice QCD with Nf = 2 + 1 flavours of O(a) improved Wilson quarks, Phys. Rev. D 100 (2019) 014510 [arXiv:1904.03120] [INSPIRE].
ADS
MathSciNet
Google Scholar
C. Michael, Adjoint Sources in Lattice Gauge Theory, Nucl. Phys. B 259 (1985) 58 [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Lüscher and U. Wolff, How to Calculate the Elastic Scattering Matrix in Two-dimensional Quantum Field Theories by Numerical Simulation, Nucl. Phys. B 339 (1990) 222 [INSPIRE].
ADS
MathSciNet
Google Scholar
B. Blossier, M. Della Morte, G. von Hippel, T. Mendes and R. Sommer, On the generalized eigenvalue method for energies and matrix elements in lattice field theory, JHEP 04 (2009) 094 [arXiv:0902.1265] [INSPIRE].
Google Scholar
M. Lüscher, Volume Dependence of the Energy Spectrum in Massive Quantum Field Theories. 2. Scattering States, Commun. Math. Phys. 105 (1986) 153 [INSPIRE].
M. Lüscher, Two particle states on a torus and their relation to the scattering matrix, Nucl. Phys. B 354 (1991) 531 [INSPIRE].
ADS
MathSciNet
Google Scholar
K. Rummukainen and S. A. Gottlieb, Resonance scattering phase shifts on a nonrest frame lattice, Nucl. Phys. B 450 (1995) 397 [hep-lat/9503028] [INSPIRE].
ADS
Google Scholar
C. h. Kim, C. T. Sachrajda and S. R. Sharpe, Finite-volume effects for two-hadron states in moving frames, Nucl. Phys. B 727 (2005) 218 [hep-lat/0507006] [INSPIRE].
J. R. Green, A. D. Hanlon, P. M. Junnarkar and H. Wittig, Weakly bound H dibaryon from SU(3)-flavor-symmetric QCD, arXiv:2103.01054 [INSPIRE].
C. Morningstar et al., Estimating the two-particle K-matrix for multiple partial waves and decay channels from finite-volume energies, Nucl. Phys. B 924 (2017) 477 [arXiv:1707.05817] [INSPIRE].
ADS
MATH
Google Scholar
D. Toussaint and W. Freeman, Sample size effects in multivariate fitting of correlated data, arXiv:0808.2211 [INSPIRE].
F. J. Yndurain, R. Garcia-Martin and J. R. Pelaez, Experimental status of the ππ isoscalar S wave at low energy: f0(600) pole and scattering length, Phys. Rev. D 76 (2007) 074034 [hep-ph/0701025] [INSPIRE].
R. Kaminski, J. R. Pelaez and F. J. Yndurain, The Pion-pion scattering amplitude. III. Improving the analysis with forward dispersion relations and Roy equations, Phys. Rev. D 77 (2008) 054015 [arXiv:0710.1150] [INSPIRE].
J. J. Dudek, R. G. Edwards and C. E. Thomas, S and D-wave phase shifts in isospin-2 ππ scattering from lattice QCD, Phys. Rev. D 86 (2012) 034031 [arXiv:1203.6041] [INSPIRE].
ADS
Google Scholar
J. Gasser and H. Leutwyler, Chiral Perturbation Theory to One Loop, Annals Phys. 158 (1984) 142 [INSPIRE].
ADS
MathSciNet
Google Scholar
Flavour Lattice Averaging Group collaboration, FLAG Review 2019: Flavour Lattice Averaging Group (FLAG), Eur. Phys. J. C 80 (2020) 113 [arXiv:1902.08191] [INSPIRE].
NPLQCD collaboration, The I = 2 ππ S-wave Scattering Phase Shift from Lattice QCD, Phys. Rev. D 85 (2012) 034505 [arXiv:1107.5023] [INSPIRE].
F. J. Yndurain, Low-energy pion physics, hep-ph/0212282 [INSPIRE].
J.-W. Chen, D. O’Connell, R. S. Van de Water and A. Walker-Loud, Ginsparg-Wilson pions scattering on a staggered sea, Phys. Rev. D 73 (2006) 074510 [hep-lat/0510024] [INSPIRE].
ADS
Google Scholar
J.-W. Chen, D. O’Connell and A. Walker-Loud, Two Meson Systems with Ginsparg-Wilson Valence Quarks, Phys. Rev. D 75 (2007) 054501 [hep-lat/0611003] [INSPIRE].
ADS
Google Scholar
A. Roessl, Pion kaon scattering near the threshold in chiral SU(2) perturbation theory, Nucl. Phys. B 555 (1999) 507 [hep-ph/9904230] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, PTEP 2020 (2020) 083C01 [INSPIRE].
X. Feng, K. Jansen and D. B. Renner, The π+ π+ scattering length from maximally twisted mass lattice QCD, Phys. Lett. B 684 (2010) 268 [arXiv:0909.3255] [INSPIRE].
ADS
Google Scholar
ETM collaboration, Hadron-hadron interactions from Nf = 2 + 1 + 1 lattice QCD: isospin-2 ππ scattering length, JHEP 09 (2015) 109 [arXiv:1506.00408] [INSPIRE].
C. Culver, M. Mai, A. Alexandru, M. Döring and F. X. Lee, Pion scattering in the isospin I = 2 channel from elongated lattices, Phys. Rev. D 100 (2019) 034509 [arXiv:1905.10202] [INSPIRE].
ADS
MathSciNet
Google Scholar
M. Mai, C. Culver, A. Alexandru, M. Döring and F. X. Lee, Cross-channel study of pion scattering from lattice QCD, Phys. Rev. D 100 (2019) 114514 [arXiv:1908.01847] [INSPIRE].
ADS
Google Scholar
J. Bulava, B. Fahy, B. Hörz, K. J. Juge, C. Morningstar and C. H. Wong, I = 1 and I = 2 π − π scattering phase shifts from Nf = 2 + 1 lattice QCD, Nucl. Phys. B 910 (2016) 842 [arXiv:1604.05593] [INSPIRE].
ADS
MATH
Google Scholar
CP-PACS collaboration, I = 2 ππ scattering phase shift with two flavors of O(a) improved dynamical quarks, Phys. Rev. D 70 (2004) 074513 [hep-lat/0402025] [INSPIRE].
NPLQCD collaboration, I = 2 ππ scattering from fully-dynamical mixed-action lattice QCD, Phys. Rev. D 73 (2006) 054503 [hep-lat/0506013] [INSPIRE].
S. R. Beane et al., Precise Determination of the I = 2 ππ Scattering Length from Mixed-Action Lattice QCD, Phys. Rev. D 77 (2008) 014505 [arXiv:0706.3026] [INSPIRE].
ADS
Google Scholar
T. Yagi, S. Hashimoto, O. Morimatsu and M. Ohtani, I = 2 π-π scattering length with dynamical overlap fermion, arXiv:1108.2970 [INSPIRE].
Z. Fu, Lattice QCD study of the s-wave ππ scattering lengths in the I = 0 and 2 channels, Phys. Rev. D 87 (2013) 074501 [arXiv:1303.0517] [INSPIRE].
ADS
Google Scholar
PACS-CS collaboration, Scattering lengths for two pseudoscalar meson systems, Phys. Rev. D 89 (2014) 054502 [arXiv:1311.7226] [INSPIRE].
RBC and UKQCD collaborations, Lattice determination of I = 0 and 2 ππ scattering phase shifts with a physical pion mass, arXiv:2103.15131 [INSPIRE].
J. J. Dudek, R. G. Edwards, M. J. Peardon, D. G. Richards and C. E. Thomas, The phase-shift of isospin-2 ππ scattering from lattice QCD, Phys. Rev. D 83 (2011) 071504 [arXiv:1011.6352] [INSPIRE].
ADS
Google Scholar
G. Colangelo, J. Gasser and H. Leutwyler, ππ scattering, Nucl. Phys. B 603 (2001) 125 [hep-ph/0103088] [INSPIRE].
ADS
Google Scholar
J. R. Pelaez and F. J. Yndurain, The Pion-pion scattering amplitude, Phys. Rev. D 71 (2005) 074016 [hep-ph/0411334] [INSPIRE].
ADS
Google Scholar
R. Kaminski, J. R. Pelaez and F. J. Yndurain, The pion-pion scattering amplitude. II. Improved analysis above \( \overline{K}K \) threshold, Phys. Rev. D 74 (2006) 014001 [Erratum ibid. 74 (2006) 079903] [hep-ph/0603170] [INSPIRE].
R. Garcia-Martin, R. Kaminski, J. R. Pelaez, J. Ruiz de Elvira and F. J. Yndurain, The Pion-pion scattering amplitude. IV: Improved analysis with once subtracted Roy-like equations up to 1100 MeV, Phys. Rev. D 83 (2011) 074004 [arXiv:1102.2183] [INSPIRE].
J. Nebreda, J. R. Pelaez and G. Rios, Chiral extrapolation of pion-pion scattering phase shifts within standard and unitarized Chiral Perturbation Theory, Phys. Rev. D 83 (2011) 094011 [arXiv:1101.2171] [INSPIRE].
ADS
Google Scholar
NPLQCD collaboration, The K + K + scattering length from lattice QCD, Phys. Rev. D 77 (2008) 094507 [arXiv:0709.1169] [INSPIRE].
C. Helmes et al., Hadron-Hadron Interactions from Nf = 2 + 1 + 1 lattice QCD: Isospin-1 KK scattering length, Phys. Rev. D 96 (2017) 034510 [arXiv:1703.04737] [INSPIRE].
ADS
Google Scholar
A. W. Jackura, R. A. Briceño, S. M. Dawid, M. H. E. Islam and C. McCarty, Solving relativistic three-body integral equations in the presence of bound states, Phys. Rev. D 104 (2021) 014507 [arXiv:2010.09820] [INSPIRE].
ADS
MathSciNet
Google Scholar