Skip to main content

Perturbative linearization of supersymmetric Yang-Mills theory

A preprint version of the article is available at arXiv.

Abstract

Supersymmetric gauge theories are characterized by the existence of a transformation of the bosonic fields (Nicolai map) such that the Jacobi determinant of the transformation equals the product of the Matthews-Salam-Seiler and Faddeev-Popov determinants. This transformation had been worked out to second order in the coupling constant. In this paper, we extend this result (and the framework itself ) to third order in the coupling constant. A diagrammatic approach in terms of tree diagrams, aiming to extend this map to arbitrary orders, is outlined. This formalism bypasses entirely the use of anti-commuting variables, as well as issues concerning the (non-)existence of off-shell formulations for these theories. It thus offers a fresh perspective on supersymmetric gauge theories and, in particular, the ubiquitous \( \mathcal{N} \) = 4 theory.

References

  1. H. Nicolai, Supersymmetry and functional integration measures, Nucl. Phys. B 176 (1980) 419 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. H. Nicolai, Supersymmetric functional integration measures, in Supersymmetry, K. Dietz et al. eds., Plenum Press, New York, NY, U.S.A. (1984), pg. 393 [INSPIRE].

  3. R. Flume and O. Lechtenfeld, On the stochastic structure of globally supersymmetric field theories, Phys. Lett. B 135 (1984) 91 [INSPIRE].

    ADS  Article  Google Scholar 

  4. K. Dietz and O. Lechtenfeld, Nicolai maps and stochastic observables from a coupling constant flow, Nucl. Phys. B 255 (1985) 149 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  5. K. Dietz and O. Lechtenfeld, Ghost free quantization of non-Abelian gauge theories via the Nicolai transformation of their supersymmetric extensions, Nucl. Phys. B 259 (1985) 397 [INSPIRE].

    ADS  Article  Google Scholar 

  6. O. Lechtenfeld, Construction of the Nicolai mapping in supersymmetric field theories, doctoral thesis, Bonn University, Bonn, Germany (1984) [INSPIRE].

  7. H. Ezawa and J.R. Klauder, Fermion without fermions: the Nicolai map revisited, Prog. Theor. Phys. 74 (1985) 904 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  8. P.T. Matthews and A. Salam, The Green’s functions of quantized fields, Nuovo Cim. 12 (1954) 563 [INSPIRE].

    ADS  Article  Google Scholar 

  9. E. Seiler, Schwinger functions for the Yukawa model in two-dimensions with space-time cutoff, Commun. Math. Phys. 42 (1975) 163 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  10. L.D. Faddeev and V.N. Popov, Feynman diagrams for the Yang-Mills field, Phys. Lett. B 25 (1967) 29 [INSPIRE].

    ADS  Article  Google Scholar 

  11. G. ’t Hooft, Renormalization of massless Yang-Mills fields, Nucl. Phys. B 33 (1971) 173 [INSPIRE].

  12. S. Ananth, H. Nicolai, C. Pandey and S. Pant, Supersymmetric Yang-Mills theories: not quite the usual perspective, J. Phys. A 53 (2020) 17 [arXiv:2001.02768] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  13. L. Brink, J.H. Schwarz and J. Scherk, Supersymmetric Yang-Mills theories, Nucl. Phys. B 121 (1977) 77 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  14. H. Nicolai and J. Plefka, N = 4 super-Yang-Mills correlators without anticommuting variables, Phys. Rev. D 101 (2020) 125013 [arXiv:2003.14325] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  15. N. Beisert et al., Review of AdS/CFT integrability: an overview, Lett. Math. Phys. 99 (2012) 3 [arXiv:1012.3982] [INSPIRE].

  16. V. de Alfaro, S. Fubini, G. Furlan and G. Veneziano, Stochastic identities in supersymmetric theories, Phys. Lett. B 142 (1984) 399 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. V. de Alfaro, S. Fubini, G. Furlan and G. Veneziano, Stochastic identities in quantum theory, Nucl. Phys. B 255 (1985) 1 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  18. V. de Alfaro, S. Fubini, G. Veneziano and G. Furlan, Nicolai mapping and stochastic identities in supersymmetric field theories, Phys. Rept. 137 (1986) 55 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  19. R. Floreanini, J.P. Leroy, J. Micheli and G.C. Rossi, A perturbative study of the Nicolai mapping, Phys. Lett. B 158 (1985) 47 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  20. V. de Alfaro, S. Fubini and G. Furlan, Stochastic identities in the light cone gauge, Phys. Lett. B 163 (1985) 176 [INSPIRE].

  21. M. Bochicchio and A. Pilloni, Gauge theories in anti-selfdual variables, JHEP 09 (2013) 039 [arXiv:1304.4949] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  22. O. Lechtenfeld, Stochastic variables in ten-dimensions?, Nucl. Phys. B 274 (1986) 633 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  23. H. Nicolai, On the functional integration measure of supersymmetric Yang-Mills theories, Phys. Lett. B 117 (1982) 408 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  24. S. Mandelstam, Light cone superspace and the ultraviolet finiteness of the N = 4 model, Nucl. Phys. B 213 (1983) 149 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  25. L. Brink, O. Lindgren and B.E.W. Nilsson, The ultraviolet finiteness of the N = 4 Yang-Mills theory, Phys. Lett. B 123 (1983) 323 [INSPIRE].

    ADS  Article  Google Scholar 

  26. S. Ananth, L. Brink and M. Mali, Yang-Mills theories and quadratic forms, JHEP 08 (2015) 153 [arXiv:1507.01068] [INSPIRE].

    MathSciNet  Article  Google Scholar 

  27. S. Ananth, C. Pandey and S. Pant, Higher spins, quadratic forms and amplitudes, JHEP 07 (2020) 100 [arXiv:2005.10376] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. H. Nicolai, A possible constructive approach to (super-ϕ3)4 in four-dimensions. 1. Euclidean formulation of the model, Nucl. Phys. B 140 (1978) 294 [INSPIRE].

  29. K. Osterwalder and R. Schrader, Axioms for Euclidean Green’s functions, Commun. Math. Phys. 31 (1973) 83 [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olaf Lechtenfeld.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.12324

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ananth, S., Lechtenfeld, O., Malcha, H. et al. Perturbative linearization of supersymmetric Yang-Mills theory. J. High Energ. Phys. 2020, 199 (2020). https://doi.org/10.1007/JHEP10(2020)199

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2020)199

Keywords

  • Supersymmetric Gauge Theory
  • Extended Supersymmetry
  • Field Theories in Higher Dimensions
  • Gauge Symmetry