Skip to main content

Magnetic catalysis and the chiral condensate in holographic QCD

A preprint version of the article is available at arXiv.

Abstract

We investigate the effect of a non-zero magnetic field on the chiral condensate using a holographic QCD approach. We extend the model proposed by Iatrakis, Kiritsis and Paredes in [1] that realises chiral symmetry breaking dynamically from 5d tachyon condensation. We calculate the chiral condensate, magnetisation and susceptibilities for the confined and deconfined phases. The model leads, in the probe approximation, to magnetic catalysis of chiral symmetry breaking in both confined and deconfined phases. In the chiral limit, mq = 0, we find that in the deconfined phase a sufficiently strong magnetic field leads to a second order phase transition from the chirally restored phase to a chirally broken phase. The transition becomes a crossover as the quark mass increases. Due to a scaling in the temperature, the chiral transition will also be interpreted as a transition in the temperature for fixed magnetic field. We elaborate on the relationship between the chiral condensate, magnetisation and the (magnetic) free energy density. We compare our results at low and moderate temperatures with lattice QCD results.

References

  1. I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from tachyon condensation: II, JHEP 11 (2010) 123 [arXiv:1010.1364] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  2. A.V. Manohar and M.B. Wise, Heavy quark physics, Camb. Monogr. Part. Phys. Nucl. Phys. Cosmol. 10 (2000) 1 [INSPIRE].

    Google Scholar 

  3. S. Scherer and M.R. Schindler, Quantum chromodynamics and chiral symmetry, Lect. Notes Phys. 830 (2012) 1 [INSPIRE].

    Google Scholar 

  4. C.D. Roberts and A.G. Williams, Dyson-Schwinger equations and their application to hadronic physics, Prog. Part. Nucl. Phys. 33 (1994) 477 [hep-ph/9403224] [INSPIRE].

    ADS  Google Scholar 

  5. J.M. Maldacena, The large N limit of superconformal field theories and supergravity, Int. J. Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  6. J. Erdmenger, N. Evans, I. Kirsch and E. Threlfall, Mesons in gauge/gravity duals — a review, Eur. Phys. J. A 35 (2008) 81 [arXiv:0711.4467] [INSPIRE].

    ADS  Google Scholar 

  7. J. Casalderrey-Solana, H. Liu, D. Mateos, K. Rajagopal and U.A. Wiedemann, Gauge/string duality, hot QCD and heavy ion collisions, Cambridge University Press, Cambridge, U.K. (2014) [arXiv:1101.0618] [INSPIRE].

    MATH  Google Scholar 

  8. A.V. Ramallo, Introduction to the AdS/CFT correspondence, Springer Proc. Phys. 161 (2015) 411 [arXiv:1310.4319] [INSPIRE].

    MATH  Google Scholar 

  9. J.D. Edelstein, J.P. Shock and D. Zoakos, The AdS/CFT correspondence and non-perturbative QCD, AIP Conf. Proc. 1116 (2009) 265 [arXiv:0901.2534] [INSPIRE].

    ADS  Google Scholar 

  10. I.R. Klebanov and M.J. Strassler, Supergravity and a confining gauge theory: duality cascades and χSB resolution of naked singularities, JHEP 08 (2000) 052 [hep-th/0007191] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. J.M. Maldacena and C. Núñez, Supergravity description of field theories on curved manifolds and a no go theorem, Int. J. Mod. Phys. A 16 (2001) 822 [hep-th/0007018] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  12. J.M. Maldacena and C. Núñez, Towards the large N limit of pure N = 1 super Yang-Mills, Phys. Rev. Lett. 86 (2001) 588 [hep-th/0008001] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. E. Witten, Anti-de Sitter space, thermal phase transition, and confinement in gauge theories, Adv. Theor. Math. Phys. 2 (1998) 505 [hep-th/9803131] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  14. A. Karch and E. Katz, Adding flavor to AdS/CFT, JHEP 06 (2002) 043 [hep-th/0205236] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  15. C. Núñez, A. Paredes and A.V. Ramallo, Unquenched flavor in the gauge/gravity correspondence, Adv. High Energy Phys. 2010 (2010) 196714 [arXiv:1002.1088] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  16. A.V. Ramallo, J.P. Shock and D. Zoakos, Holographic flavor in N = 4 gauge theories in 3d from wrapped branes, JHEP 02 (2009) 001 [arXiv:0812.1975] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. D. Arean, E. Conde, A.V. Ramallo and D. Zoakos, Holographic duals of SQCD models in low dimensions, JHEP 06 (2010) 095 [arXiv:1004.4212] [INSPIRE].

    ADS  MATH  Google Scholar 

  18. N. Jokela, J. Mas, A.V. Ramallo and D. Zoakos, Thermodynamics of the brane in Chern-Simons matter theories with flavor, JHEP 02 (2013) 144 [arXiv:1211.0630] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. G. Itsios, V.G. Filev and D. Zoakos, Backreacted flavor in non-commutative gauge theories, JHEP 06 (2013) 092 [arXiv:1304.5211] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  20. V.G. Filev and D. Zoakos, Multiple backreacted flavour branes, JHEP 12 (2014) 186 [arXiv:1410.2879] [INSPIRE].

    ADS  Google Scholar 

  21. Y. Bea, N. Jokela, M. Lippert, A.V. Ramallo and D. Zoakos, Flux and Hall states in ABJM with dynamical flavors, JHEP 03 (2015) 009 [arXiv:1411.3335] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. D. Mateos, S. Matsuura, R.C. Myers and R.M. Thomson, Holographic phase transitions at finite chemical potential, JHEP 11 (2007) 085 [arXiv:0709.1225] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. V.G. Filev, C.V. Johnson, R.C. Rashkov and K.S. Viswanathan, Flavoured large N gauge theory in an external magnetic field, JHEP 10 (2007) 019 [hep-th/0701001] [INSPIRE].

    ADS  Google Scholar 

  24. J. Erdmenger, R. Meyer and J.P. Shock, AdS/CFT with flavour in electric and magnetic Kalb-Ramond fields, JHEP 12 (2007) 091 [arXiv:0709.1551] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. T. Albash, V.G. Filev, C.V. Johnson and A. Kundu, Finite temperature large N gauge theory with quarks in an external magnetic field, JHEP 07 (2008) 080 [arXiv:0709.1547] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. E. D’Hoker and P. Kraus, Magnetic brane solutions in AdS, JHEP 10 (2009) 088 [arXiv:0908.3875] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  27. N.R. Constable and R.C. Myers, Exotic scalar states in the AdS/CFT correspondence, JHEP 11 (1999) 020 [hep-th/9905081] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  28. N.J. Evans and J.P. Shock, Chiral dynamics from AdS space, Phys. Rev. D 70 (2004) 046002 [hep-th/0403279] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  29. M. Kruczenski, D. Mateos, R.C. Myers and D.J. Winters, Towards a holographic dual of large Nc QCD, JHEP 05 (2004) 041 [hep-th/0311270] [INSPIRE].

    ADS  Google Scholar 

  30. T. Sakai and S. Sugimoto, Low energy hadron physics in holographic QCD, Prog. Theor. Phys. 113 (2005) 843 [hep-th/0412141] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. T. Sakai and S. Sugimoto, More on a holographic dual of QCD, Prog. Theor. Phys. 114 (2005) 1083 [hep-th/0507073] [INSPIRE].

    ADS  MATH  Google Scholar 

  32. J. Babington, J. Erdmenger, N.J. Evans, Z. Guralnik and I. Kirsch, Chiral symmetry breaking and pions in nonsupersymmetric gauge/gravity duals, Phys. Rev. D 69 (2004) 066007 [hep-th/0306018] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  33. S. Kuperstein and J. Sonnenschein, A new holographic model of chiral symmetry breaking, JHEP 09 (2008) 012 [arXiv:0807.2897] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  34. I.R. Klebanov and E. Witten, Superconformal field theory on three-branes at a Calabi-Yau singularity, Nucl. Phys. B 536 (1998) 199 [hep-th/9807080] [INSPIRE].

    ADS  MATH  Google Scholar 

  35. V.G. Filev, M. Ihl and D. Zoakos, A novel (2 + 1)-dimensional model of chiral symmetry breaking, JHEP 12 (2013) 072 [arXiv:1310.1222] [INSPIRE].

    ADS  Google Scholar 

  36. V.G. Filev, M. Ihl and D. Zoakos, Holographic bilayer/monolayer phase transitions, JHEP 07 (2014) 043 [arXiv:1404.3159] [INSPIRE].

    ADS  Google Scholar 

  37. I. Iatrakis, E. Kiritsis and A. Paredes, An AdS/QCD model from Sen’s tachyon action, Phys. Rev. D 81 (2010) 115004 [arXiv:1003.2377] [INSPIRE].

    ADS  MATH  Google Scholar 

  38. R. Casero, E. Kiritsis and A. Paredes, Chiral symmetry breaking as open string tachyon condensation, Nucl. Phys. B 787 (2007) 98 [hep-th/0702155] [INSPIRE].

    ADS  Google Scholar 

  39. J. Erlich, E. Katz, D.T. Son and M.A. Stephanov, QCD and a holographic model of hadrons, Phys. Rev. Lett. 95 (2005) 261602 [hep-ph/0501128] [INSPIRE].

    ADS  Google Scholar 

  40. L. Da Rold and A. Pomarol, Chiral symmetry breaking from five dimensional spaces, Nucl. Phys. B 721 (2005) 79 [hep-ph/0501218] [INSPIRE].

    ADS  MATH  Google Scholar 

  41. J. Polchinski and M.J. Strassler, Hard scattering and gauge/string duality, Phys. Rev. Lett. 88 (2002) 031601 [hep-th/0109174] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. A. Karch, E. Katz, D.T. Son and M.A. Stephanov, Linear confinement and AdS/QCD, Phys. Rev. D 74 (2006) 015005 [hep-ph/0602229] [INSPIRE].

    ADS  Google Scholar 

  43. T. Gherghetta, J.I. Kapusta and T.M. Kelley, Chiral symmetry breaking in the soft-wall AdS/QCD model, Phys. Rev. D 79 (2009) 076003 [arXiv:0902.1998] [INSPIRE].

    ADS  Google Scholar 

  44. K. Chelabi, Z. Fang, M. Huang, D. Li and Y.-L. Wu, Chiral phase transition in the soft-wall model of AdS/QCD, JHEP 04 (2016) 036 [arXiv:1512.06493] [INSPIRE].

    ADS  Google Scholar 

  45. A. Ballon-Bayona and L.A.H. Mamani, Nonlinear realization of chiral symmetry breaking in holographic soft wall models, Phys. Rev. D 102 (2020) 026013 [arXiv:2002.00075] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. M. Jarvinen and E. Kiritsis, Holographic models for QCD in the Veneziano limit, JHEP 03 (2012) 002 [arXiv:1112.1261] [INSPIRE].

    ADS  MATH  Google Scholar 

  47. D. Areán, I. Iatrakis, M. Järvinen and E. Kiritsis, The discontinuities of conformal transitions and mass spectra of V-QCD, JHEP 11 (2013) 068 [arXiv:1309.2286] [INSPIRE].

    ADS  Google Scholar 

  48. M. Jarvinen, Massive holographic QCD in the Veneziano limit, JHEP 07 (2015) 033 [arXiv:1501.07272] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. U. Gürsoy and E. Kiritsis, Exploring improved holographic theories for QCD: part I, JHEP 02 (2008) 032 [arXiv:0707.1324] [INSPIRE].

    ADS  Google Scholar 

  50. U. Gürsoy, E. Kiritsis and F. Nitti, Exploring improved holographic theories for QCD: part II, JHEP 02 (2008) 019 [arXiv:0707.1349] [INSPIRE].

    ADS  Google Scholar 

  51. U. Gürsoy, E. Kiritsis, L. Mazzanti and F. Nitti, Improved holographic Yang-Mills at finite temperature: comparison with data, Nucl. Phys. B 820 (2009) 148 [arXiv:0903.2859] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  52. U. Gürsoy, E. Kiritsis, L. Mazzanti, G. Michalogiorgakis and F. Nitti, Improved holographic QCD, Lect. Notes Phys. 828 (2011) 79 [arXiv:1006.5461] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. F. Bigazzi, R. Casero, A.L. Cotrone, E. Kiritsis and A. Paredes, Non-critical holography and four-dimensional CFT’s with fundamentals, JHEP 10 (2005) 012 [hep-th/0505140] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  54. A. Sen, Dirac-Born-Infeld action on the tachyon kink and vortex, Phys. Rev. D 68 (2003) 066008 [hep-th/0303057] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  55. N. Jokela, M. Järvinen and J. Remes, Holographic QCD in the Veneziano limit and neutron stars, JHEP 03 (2019) 041 [arXiv:1809.07770] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Catalysis of dynamical flavor symmetry breaking by a magnetic field in (2 + 1)-dimensions, Phys. Rev. Lett. 73 (1994) 3499 [Erratum ibid. 76 (1996) 1005] [hep-ph/9405262] [INSPIRE].

  57. V.P. Gusynin, V.A. Miransky and I.A. Shovkovy, Dimensional reduction and dynamical chiral symmetry breaking by a magnetic field in (3 + 1)-dimensions, Phys. Lett. B 349 (1995) 477 [hep-ph/9412257] [INSPIRE].

    ADS  Google Scholar 

  58. G.S. Bali et al., The QCD phase diagram for external magnetic fields, JHEP 02 (2012) 044 [arXiv:1111.4956] [INSPIRE].

    ADS  MATH  Google Scholar 

  59. G.S. Bali, F. Bruckmann, G. Endrodi, Z. Fodor, S.D. Katz and A. Schafer, QCD quark condensate in external magnetic fields, Phys. Rev. D 86 (2012) 071502 [arXiv:1206.4205] [INSPIRE].

    ADS  MATH  Google Scholar 

  60. M. D’Elia, Lattice QCD simulations in external background fields, Lect. Notes Phys. 871 (2013) 181 [arXiv:1209.0374] [INSPIRE].

    ADS  Google Scholar 

  61. U. Gürsoy, D. Kharzeev and K. Rajagopal, Magnetohydrodynamics, charged currents and directed flow in heavy ion collisions, Phys. Rev. C 89 (2014) 054905 [arXiv:1401.3805] [INSPIRE].

    ADS  Google Scholar 

  62. T. Banks and A. Casher, Chiral symmetry breaking in confining theories, Nucl. Phys. B 169 (1980) 103 [INSPIRE].

    ADS  Google Scholar 

  63. F. Bruckmann, G. Endrodi and T.G. Kovacs, Inverse magnetic catalysis and the Polyakov loop, JHEP 04 (2013) 112 [arXiv:1303.3972] [INSPIRE].

    ADS  Google Scholar 

  64. J.O. Andersen, W.R. Naylor and A. Tranberg, Phase diagram of QCD in a magnetic field: a review, Rev. Mod. Phys. 88 (2016) 025001 [arXiv:1411.7176] [INSPIRE].

    ADS  Google Scholar 

  65. V.A. Miransky and I.A. Shovkovy, Quantum field theory in a magnetic field: from quantum chromodynamics to graphene and Dirac semimetals, Phys. Rept. 576 (2015) 1 [arXiv:1503.00732] [INSPIRE].

    ADS  MATH  Google Scholar 

  66. A. Bandyopadhyay and R.L.S. Farias, Inverse magnetic catalysis — how much do we know about?, arXiv:2003.11054 [INSPIRE].

  67. F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in field theory and gauge-gravity duality, Lect. Notes Phys. 871 (2013) 51 [arXiv:1208.0536] [INSPIRE].

    ADS  Google Scholar 

  68. C.V. Johnson and A. Kundu, External fields and chiral symmetry breaking in the Sakai-Sugimoto model, JHEP 12 (2008) 053 [arXiv:0803.0038] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  69. V.G. Filev, C.V. Johnson and J.P. Shock, Universal holographic chiral dynamics in an external magnetic field, JHEP 08 (2009) 013 [arXiv:0903.5345] [INSPIRE].

    ADS  Google Scholar 

  70. F. Preis, A. Rebhan and A. Schmitt, Inverse magnetic catalysis in dense holographic matter, JHEP 03 (2011) 033 [arXiv:1012.4785] [INSPIRE].

    ADS  MATH  Google Scholar 

  71. V.G. Filev and D. Zoakos, Towards unquenched holographic magnetic catalysis, JHEP 08 (2011) 022 [arXiv:1106.1330] [INSPIRE].

    ADS  MATH  Google Scholar 

  72. J. Erdmenger, V.G. Filev and D. Zoakos, Magnetic catalysis with massive dynamical flavours, JHEP 08 (2012) 004 [arXiv:1112.4807] [INSPIRE].

    ADS  Google Scholar 

  73. A. Ballon-Bayona, Holographic deconfinement transition in the presence of a magnetic field, JHEP 11 (2013) 168 [arXiv:1307.6498] [INSPIRE].

    ADS  Google Scholar 

  74. N. Jokela, A.V. Ramallo and D. Zoakos, Magnetic catalysis in flavored ABJM, JHEP 02 (2014) 021 [arXiv:1311.6265] [INSPIRE].

    ADS  Google Scholar 

  75. K.A. Mamo, Inverse magnetic catalysis in holographic models of QCD, JHEP 05 (2015) 121 [arXiv:1501.03262] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  76. R. Rougemont, R. Critelli and J. Noronha, Holographic calculation of the QCD crossover temperature in a magnetic field, Phys. Rev. D 93 (2016) 045013 [arXiv:1505.07894] [INSPIRE].

    ADS  Google Scholar 

  77. D. Dudal, D.R. Granado and T.G. Mertens, No inverse magnetic catalysis in the QCD hard and soft wall models, Phys. Rev. D 93 (2016) 125004 [arXiv:1511.04042] [INSPIRE].

    ADS  Google Scholar 

  78. N. Evans, C. Miller and M. Scott, Inverse magnetic catalysis in bottom-up holographic QCD, Phys. Rev. D 94 (2016) 074034 [arXiv:1604.06307] [INSPIRE].

    ADS  Google Scholar 

  79. Z. Fang, Anomalous dimension, chiral phase transition and inverse magnetic catalysis in soft-wall AdS/QCD, Phys. Lett. B 758 (2016) 1 [INSPIRE].

    ADS  MATH  Google Scholar 

  80. U. Gürsoy, I. Iatrakis, M. Järvinen and G. Nijs, Inverse magnetic catalysis from improved holographic QCD in the Veneziano limit, JHEP 03 (2017) 053 [arXiv:1611.06339] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  81. A. Ballon-Bayona, M. Ihl, J.P. Shock and D. Zoakos, A universal order parameter for inverse magnetic catalysis, JHEP 10 (2017) 038 [arXiv:1706.05977] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  82. U. Gürsoy, M. Jarvinen and G. Nijs, Holographic QCD in the Veneziano limit at a finite magnetic field and chemical potential, Phys. Rev. Lett. 120 (2018) 242002 [arXiv:1707.00872] [INSPIRE].

    ADS  Google Scholar 

  83. D.M. Rodrigues, E. Folco Capossoli and H. Boschi-Filho, Magnetic catalysis and inverse magnetic catalysis in (2 + 1)-dimensional gauge theories from holographic models, Phys. Rev. D 97 (2018) 126001 [arXiv:1710.07310] [INSPIRE].

    ADS  Google Scholar 

  84. D. Giataganas, U. Gürsoy and J.F. Pedraza, Strongly-coupled anisotropic gauge theories and holography, Phys. Rev. Lett. 121 (2018) 121601 [arXiv:1708.05691] [INSPIRE].

    ADS  Google Scholar 

  85. U. Gürsoy, M. Järvinen, G. Nijs and J.F. Pedraza, Inverse anisotropic catalysis in holographic QCD, JHEP 04 (2019) 071 [Erratum ibid. 09 (2020) 059] [arXiv:1811.11724] [INSPIRE].

  86. V.G. Filev and R.C. Rashkov, Critical point in a holographic defect field theory, JHEP 11 (2019) 027 [arXiv:1905.06472] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  87. H. Bohra, D. Dudal, A. Hajilou and S. Mahapatra, Anisotropic string tensions and inversely magnetic catalyzed deconfinement from a dynamical AdS/QCD model, Phys. Lett. B 801 (2020) 135184 [arXiv:1907.01852] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  88. S. He, Y. Yang and P.-H. Yuan, Analytic study of magnetic catalysis in holographic QCD, arXiv:2004.01965 [INSPIRE].

  89. D. Mateos and D. Trancanelli, Thermodynamics and instabilities of a strongly coupled anisotropic plasma, JHEP 07 (2011) 054 [arXiv:1106.1637] [INSPIRE].

    ADS  MATH  Google Scholar 

  90. M. Ammon, V.G. Filev, J. Tarrio and D. Zoakos, D3/D7 quark-gluon plasma with magnetically induced anisotropy, JHEP 09 (2012) 039 [arXiv:1207.1047] [INSPIRE].

    ADS  Google Scholar 

  91. E. Conde, H. Lin, J.M. Penin, A.V. Ramallo and D. Zoakos, D3-D5 theories with unquenched flavors, Nucl. Phys. B 914 (2017) 599 [arXiv:1607.04998] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  92. J.M. Penin, A.V. Ramallo and D. Zoakos, Anisotropic D3-D5 black holes with unquenched flavors, JHEP 02 (2018) 139 [arXiv:1710.00548] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  93. N. Jokela, J.M. Penín, A.V. Ramallo and D. Zoakos, Gravity dual of a multilayer system, JHEP 03 (2019) 064 [arXiv:1901.02020] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  94. M.R. Garousi, D-brane \( \overline{D} \)-brane effective action and brane interaction in open string channel, JHEP 01 (2005) 029 [hep-th/0411222] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  95. S.R. Coleman and E. Witten, Chiral symmetry breakdown in large N chromodynamics, Phys. Rev. Lett. 45 (1980) 100 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  96. D. Kutasov, M. Mariño and G.W. Moore, Remarks on tachyon condensation in superstring field theory, hep-th/0010108 [INSPIRE].

  97. J.A. Minahan and B. Zwiebach, Effective tachyon dynamics in superstring theory, JHEP 03 (2001) 038 [hep-th/0009246] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  98. A. Ballon-Bayona, C.N. Ferreira and V.J. Otoya, DBI equations and holographic DC conductivity, Phys. Rev. D 87 (2013) 106007 [arXiv:1302.0802] [INSPIRE].

    ADS  Google Scholar 

  99. Y. Kinar, E. Schreiber and J. Sonnenschein, \( Q\overline{Q} \) potential from strings in curved space-time: classical results, Nucl. Phys. B 566 (2000) 103 [hep-th/9811192] [INSPIRE].

    ADS  MATH  Google Scholar 

  100. E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys. 2 (1998) 253 [hep-th/9802150] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  101. S. Kuperstein and J. Sonnenschein, Non-critical, near extremal AdS6 background as a holographic laboratory of four dimensional YM theory, JHEP 11 (2004) 026 [hep-th/0411009] [INSPIRE].

    ADS  Google Scholar 

  102. G. Mandal and T. Morita, Gregory-Laflamme as the confinement/deconfinement transition in holographic QCD, JHEP 09 (2011) 073 [arXiv:1107.4048] [INSPIRE].

    ADS  MATH  Google Scholar 

  103. G.S. Bali, F. Bruckmann, G. Endrodi and A. Schafer, Paramagnetic squeezing of QCD matter, Phys. Rev. Lett. 112 (2014) 042301 [arXiv:1311.2559] [INSPIRE].

    ADS  Google Scholar 

  104. G.S. Bali, F. Bruckmann, G. Endrödi, S.D. Katz and A. Schäfer, The QCD equation of state in background magnetic fields, JHEP 08 (2014) 177 [arXiv:1406.0269] [INSPIRE].

    ADS  Google Scholar 

  105. M. D’Elia, F. Manigrasso, F. Negro and F. Sanfilippo, QCD phase diagram in a magnetic background for different values of the pion mass, Phys. Rev. D 98 (2018) 054509 [arXiv:1808.07008] [INSPIRE].

    ADS  Google Scholar 

  106. G.S. Bali, G. Endrődi and S. Piemonte, Magnetic susceptibility of QCD matter and its decomposition from the lattice, JHEP 07 (2020) 183 [arXiv:2004.08778] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  107. A. Cherman, T.D. Cohen and E.S. Werbos, The chiral condensate in holographic models of QCD, Phys. Rev. C 79 (2009) 045203 [arXiv:0804.1096] [INSPIRE].

    ADS  Google Scholar 

  108. O. Bergman, S. Seki and J. Sonnenschein, Quark mass and condensate in HQCD, JHEP 12 (2007) 037 [arXiv:0708.2839] [INSPIRE].

    ADS  Google Scholar 

  109. O. Aharony and D. Kutasov, Holographic duals of long open strings, Phys. Rev. D 78 (2008) 026005 [arXiv:0803.3547] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  110. M. Gell-Mann, R.J. Oakes and B. Renner, Behavior of current divergences under SU(3) × SU(3), Phys. Rev. 175 (1968) 2195 [INSPIRE].

    ADS  Google Scholar 

  111. J. Gasser and H. Leutwyler, Low-energy expansion of meson form-factors, Nucl. Phys. B 250 (1985) 517 [INSPIRE].

    ADS  Google Scholar 

  112. E. Witten, Baryons and branes in anti-de Sitter space, JHEP 07 (1998) 006 [hep-th/9805112] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  113. Y. Seo, J.P. Shock, S.-J. Sin and D. Zoakos, Holographic hadrons in a confining finite density medium, JHEP 03 (2010) 115 [arXiv:0912.4013] [INSPIRE].

    ADS  MATH  Google Scholar 

  114. N. Evans, K.-Y. Kim, M. Magou, Y. Seo and S.-J. Sin, The baryonic phase in holographic descriptions of the QCD phase diagram, JHEP 09 (2012) 045 [arXiv:1204.5640] [INSPIRE].

    ADS  Google Scholar 

  115. H. Hata, T. Sakai, S. Sugimoto and S. Yamato, Baryons from instantons in holographic QCD, Prog. Theor. Phys. 117 (2007) 1157 [hep-th/0701280] [INSPIRE].

    ADS  MATH  Google Scholar 

  116. S. Bolognesi and P. Sutcliffe, The Sakai-Sugimoto soliton, JHEP 01 (2014) 078 [arXiv:1309.1396] [INSPIRE].

    ADS  Google Scholar 

  117. F. Preis, A. Rebhan and A. Schmitt, Holographic baryonic matter in a background magnetic field, J. Phys. G 39 (2012) 054006 [arXiv:1109.6904] [INSPIRE].

    ADS  Google Scholar 

  118. A. Pomarol and A. Wulzer, Baryon physics in holographic QCD, Nucl. Phys. B 809 (2009) 347 [arXiv:0807.0316] [INSPIRE].

    ADS  MATH  Google Scholar 

  119. T. Ishii, M. Järvinen and G. Nijs, Cool baryon and quark matter in holographic QCD, JHEP 07 (2019) 003 [arXiv:1903.06169] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dimitrios Zoakos.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.00500

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ballon-Bayona, A., Shock, J.P. & Zoakos, D. Magnetic catalysis and the chiral condensate in holographic QCD. J. High Energ. Phys. 2020, 193 (2020). https://doi.org/10.1007/JHEP10(2020)193

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2020)193

Keywords

  • Gauge-gravity correspondence
  • Spontaneous Symmetry Breaking
  • Tachyon Condensation