Skip to main content

Advertisement

SpringerLink
Fixed-order and merged parton-shower predictions for WW and WWj production at the LHC including NLO QCD and EW corrections
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 26 October 2020

Fixed-order and merged parton-shower predictions for WW and WWj production at the LHC including NLO QCD and EW corrections

  • Stephan Bräuer1,
  • Ansgar Denner2,
  • Mathieu Pellen  ORCID: orcid.org/0000-0001-5324-27653,
  • Marek Schönherr4 &
  • …
  • Steffen Schumann1 

Journal of High Energy Physics volume 2020, Article number: 159 (2020) Cite this article

  • 157 Accesses

  • 10 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

First, we present a combined analysis of pp \( \to {\mu}^{+}{v}_{\mu }{\mathrm{e}}^{-}{\overline{v}}_{\mathrm{e}} \) and pp \( \to {\mu}^{+}{v}_{\mu }{\mathrm{e}}^{-}{\overline{v}}_{\mathrm{e}}\mathrm{j} \) at next-to-leading order, including both QCD and electroweak corrections. Second, we provide all-order predictions for pp \( \to {\mu}^{+}{v}_{\mu }{\mathrm{e}}^{-}{\overline{v}}_{\mathrm{e}}+ \)jets using merged parton-shower simulations that also include approximate EW effects. A fully inclusive sample for WW production is compared to the fixed-order computations for exclusive zero- and one-jet selections. The various higher-order effects are studied in detail at the level of cross sections and differential distributions for realistic experimental set-ups. Our study confirms that merged predictions are significantly more stable than the fixed-order ones in particular regarding ratios between the two processes.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. ATLAS collaboration, Measurement of fiducial and differential W + W – production cross-sections at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Eur. Phys. J. C 79 (2019) 884 [arXiv:1905.04242] [INSPIRE].

  2. CMS collaboration, Search for anomalous couplings in boosted WW/WZ → \( \mathrm{\ell}v\mathrm{q}\overline{\mathrm{q}} \) production in proton-proton collisions at \( \sqrt{s} \) = 8 TeV, Phys. Lett. B 772 (2017) 21 [arXiv:1703.06095] [INSPIRE].

  3. ATLAS collaboration, Measurement of W + W − production in association with one jet in proton–proton collisions at \( \sqrt{s} \) = 8 TeV with the ATLAS detector, Phys. Lett. B 763 (2016) 114 [arXiv:1608.03086] [INSPIRE].

  4. J. Ohnemus, Order-αs calculation of hadronic W − W + production, Phys. Rev. D 44 (1991) 1403 [INSPIRE].

    ADS  Google Scholar 

  5. U. Baur, T. Han and J. Ohnemus, QCD corrections and nonstandard three vector boson couplings in W + W − production at hadron colliders, Phys. Rev. D 53 (1996) 1098 [hep-ph/9507336] [INSPIRE].

    ADS  Google Scholar 

  6. J.M. Campbell and R. Ellis, An update on vector boson pair production at hadron colliders, Phys. Rev. D 60 (1999) 113006 [hep-ph/9905386] [INSPIRE].

    ADS  Google Scholar 

  7. S. Frixione and B.R. Webber, Matching NLO QCD computations and parton shower simulations, JHEP 06 (2002) 029 [hep-ph/0204244] [INSPIRE].

    ADS  Google Scholar 

  8. K. Hamilton, A positive-weight next-to-leading order simulation of weak boson pair production, JHEP 01 (2011) 009 [arXiv:1009.5391] [INSPIRE].

    ADS  Google Scholar 

  9. J.H. Kühn, F. Metzler, A.A. Penin and S. Uccirati, Next-to-Next-to-Leading Electroweak Logarithms for W-Pair Production at LHC, JHEP 06 (2011) 143 [arXiv:1101.2563] [INSPIRE].

    ADS  MATH  Google Scholar 

  10. A. Bierweiler, T. Kasprzik, J.H. Kühn and S. Uccirati, Electroweak corrections to W-boson pair production at the LHC, JHEP 11 (2012) 093 [arXiv:1208.3147] [INSPIRE].

    ADS  Google Scholar 

  11. J. Baglio, L.D. Ninh and M.M. Weber, Massive gauge boson pair production at the LHC: a next-to-leading order story, Phys. Rev. D 88 (2013) 113005 [Erratum ibid. 94 (2016) 099902] [arXiv:1307.4331] [INSPIRE].

  12. S. Gieseke, T. Kasprzik and J.H. Kühn, Vector-boson pair production and electroweak corrections in HERWIG++, Eur. Phys. J. C 74 (2014) 2988 [arXiv:1401.3964] [INSPIRE].

    ADS  Google Scholar 

  13. B. Biedermann et al., Next-to-leading-order electroweak corrections to pp → W + W − → 4 leptons at the LHC, JHEP 06 (2016) 065 [arXiv:1605.03419] [INSPIRE].

    ADS  Google Scholar 

  14. S. Kallweit, J.M. Lindert, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for 2ℓ2ν diboson signatures at the LHC, JHEP 11 (2017) 120 [arXiv:1705.00598] [INSPIRE].

    ADS  Google Scholar 

  15. T. Gehrmann et al., W + W − Production at Hadron Colliders in Next to Next to Leading Order QCD, Phys. Rev. Lett. 113 (2014) 212001 [arXiv:1408.5243] [INSPIRE].

    ADS  Google Scholar 

  16. M. Grazzini, S. Kallweit, S. Pozzorini, D. Rathlev and M. Wiesemann, W + W − production at the LHC: fiducial cross sections and distributions in NNLO QCD, JHEP 08 (2016) 140 [arXiv:1605.02716] [INSPIRE].

    ADS  Google Scholar 

  17. M. Grazzini, S. Kallweit, J.M. Lindert, S. Pozzorini and M. Wiesemann, NNLO QCD + NLO EW with Matrix+OpenLoops: precise predictions for vector-boson pair production, JHEP 02 (2020) 087 [arXiv:1912.00068] [INSPIRE].

    ADS  Google Scholar 

  18. E. Re, M. Wiesemann and G. Zanderighi, NNLOPS accurate predictions for W + W − production, JHEP 12 (2018) 121 [arXiv:1805.09857] [INSPIRE].

    ADS  Google Scholar 

  19. M. Grazzini, S. Kallweit, D. Rathlev and M. Wiesemann, Transverse-momentum resummation for vector-boson pair production at NNLL+NNLO, JHEP 08 (2015) 154 [arXiv:1507.02565] [INSPIRE].

    Google Scholar 

  20. F. Caola, K. Melnikov, R. Röntsch and L. Tancredi, QCD corrections to W + W − production through gluon fusion, Phys. Lett. B 754 (2016) 275 [arXiv:1511.08617] [INSPIRE].

    ADS  Google Scholar 

  21. M. Grazzini, S. Kallweit, M. Wiesemann and J.Y. Yook, W + W − production at the LHC: NLO QCD corrections to the loop-induced gluon fusion channel, Phys. Lett. B 804 (2020) 135399 [arXiv:2002.01877] [INSPIRE].

    Google Scholar 

  22. S. Kallweit, E. Re, L. Rottoli and M. Wiesemann, Accurate single- and double-differential resummation of colour-singlet processes with MATRIX+RadISH: W + W − production at the LHC, arXiv:2004.07720 [INSPIRE].

  23. S. Dittmaier, S. Kallweit and P. Uwer, NLO QCD corrections to pp/\( p\overline{p} \) → WW+jet+X including leptonic W-boson decays, Nucl. Phys. B 826 (2010) 18 [arXiv:0908.4124] [INSPIRE].

    ADS  MATH  Google Scholar 

  24. F. Cascioli, S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini and F. Siegert, Precise Higgs-background predictions: merging NLO QCD and squared quark-loop corrections to four-lepton + 0,1 jet production, JHEP 01 (2014) 046 [arXiv:1309.0500] [INSPIRE].

    ADS  Google Scholar 

  25. K. Hamilton, T. Melia, P.F. Monni, E. Re and G. Zanderighi, Merging WW and WW+jet with MINLO, JHEP 09 (2016) 057 [arXiv:1606.07062] [INSPIRE].

    ADS  Google Scholar 

  26. W.-H. Li, R.-Y. Zhang, W.-G. Ma, L. Guo, X.-Z. Li and Y. Zhang, NLO QCD and electroweak corrections to W W +jet production with leptonic W -boson decays at LHC, Phys. Rev. D 92 (2015) 033005 [arXiv:1507.07332] [INSPIRE].

    ADS  Google Scholar 

  27. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO QCD+EW predictions for V + jets including off-shell vector-boson decays and multijet merging, JHEP 04 (2016) 021 [arXiv:1511.08692] [INSPIRE].

    ADS  Google Scholar 

  28. B. Biedermann, S. Bräuer, A. Denner, M. Pellen, S. Schumann and J.M. Thompson, Automation of NLO QCD and EW corrections with Sherpa and Recola, Eur. Phys. J. C 77 (2017) 492 [arXiv:1704.05783] [INSPIRE].

    ADS  Google Scholar 

  29. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to W + jet hadroproduction including leptonic W-boson decays, JHEP 08 (2009) 075 [arXiv:0906.1656] [INSPIRE].

    ADS  Google Scholar 

  30. A. Denner, S. Dittmaier, T. Gehrmann and C. Kurz, Electroweak corrections to hadronic event shapes and jet production in e+ e− annihilation, Nucl. Phys. B 836 (2010) 37 [arXiv:1003.0986] [INSPIRE].

    ADS  MATH  Google Scholar 

  31. A. Denner, S. Dittmaier, T. Kasprzik and A. Mück, Electroweak corrections to dilepton + jet production at hadron colliders, JHEP 06 (2011) 069 [arXiv:1103.0914] [INSPIRE].

    ADS  Google Scholar 

  32. A. Denner, L. Hofer, A. Scharf and S. Uccirati, Electroweak corrections to lepton pair production in association with two hard jets at the LHC, JHEP 01 (2015) 094 [arXiv:1411.0916] [INSPIRE].

    ADS  Google Scholar 

  33. A. Denner, S. Dittmaier, P. Maierhöfer, M. Pellen and C. Schwan, QCD and electroweak corrections to WZ scattering at the LHC, JHEP 06 (2019) 067 [arXiv:1904.00882] [INSPIRE].

    ADS  Google Scholar 

  34. A. Denner, S. Dittmaier, M. Pellen and C. Schwan, Low-virtuality photon transitions γ* → \( f\overline{f} \) and the photon-to-jet conversion function, Phys. Lett. B 798 (2019) 134951 [arXiv:1907.02366] [INSPIRE].

    Google Scholar 

  35. S. Höche, F. Krauss, S. Schumann and F. Siegert, QCD matrix elements and truncated showers, JHEP 05 (2009) 053 [arXiv:0903.1219] [INSPIRE].

    ADS  Google Scholar 

  36. S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO matrix elements and truncated showers, JHEP 08 (2011) 123 [arXiv:1009.1127] [INSPIRE].

    ADS  Google Scholar 

  37. S. Höche, F. Krauss, M. Schönherr and F. Siegert, QCD matrix elements + parton showers: The NLO case, JHEP 04 (2013) 027 [arXiv:1207.5030] [INSPIRE].

    ADS  Google Scholar 

  38. T. Gehrmann, S. Höche, F. Krauss, M. Schönherr and F. Siegert, NLO QCD matrix elements + parton showers in e+ e− → hadrons, JHEP 01 (2013) 144 [arXiv:1207.5031] [INSPIRE].

    ADS  Google Scholar 

  39. S. Höche, F. Krauss, S. Pozzorini, M. Schönherr, J.M. Thompson and K.C. Zapp, Triple vector boson production through Higgs-Strahlung with NLO multijet merging, Phys. Rev. D 89 (2014) 093015 [arXiv:1403.7516] [INSPIRE].

    ADS  Google Scholar 

  40. S. Catani, F. Krauss, R. Kuhn and B.R. Webber, QCD matrix elements + parton showers, JHEP 11 (2001) 063 [hep-ph/0109231] [INSPIRE].

    ADS  Google Scholar 

  41. S. Höche, F. Krauss, M. Schönherr and F. Siegert, A critical appraisal of NLO+PS matching methods, JHEP 09 (2012) 049 [arXiv:1111.1220] [INSPIRE].

    ADS  Google Scholar 

  42. S. Höche, F. Krauss, M. Schönherr and F. Siegert, W + n-jet predictions at the Large Hadron Collider at next-to-leading order matched with a parton shower, Phys. Rev. Lett. 110 (2013) 052001 [arXiv:1201.5882] [INSPIRE].

    ADS  Google Scholar 

  43. S. Höche and M. Schönherr, Uncertainties in next-to-leading order plus parton shower matched simulations of inclusive jet and dijet production, Phys. Rev. D 86 (2012) 094042 [arXiv:1208.2815] [INSPIRE].

    ADS  Google Scholar 

  44. K. Danziger, Efficiency Improvements in Monte Carlo Algorithms for High-Multiplicity Processes. Ph.D. thesis, presented 31 March 2020, .https://cds.cern.ch/record/2715727.

  45. C. Gütschow, J.M. Lindert and M. Schönherr, Multi-jet merged top-pair production including electroweak corrections, Eur. Phys. J. C 78 (2018) 317 [arXiv:1803.00950] [INSPIRE].

    ADS  Google Scholar 

  46. M. Schönherr, An automated subtraction of NLO EW infrared divergences, Eur. Phys. J. C 78 (2018) 119 [arXiv:1712.07975] [INSPIRE].

    ADS  Google Scholar 

  47. M. Schönherr, Next-to-leading order electroweak corrections to off-shell WWW production at the LHC, JHEP 07 (2018) 076 [arXiv:1806.00307] [INSPIRE].

    ADS  Google Scholar 

  48. M. Reyer, M. Schönherr and S. Schumann, Full NLO corrections to 3-jet production and R32 at the LHC, Eur. Phys. J. C 79 (2019) 321 [arXiv:1902.01763] [INSPIRE].

    ADS  Google Scholar 

  49. N. Baberuxki, C.T. Preuss, D. Reichelt and S. Schumann, Resummed predictions for jet-resolution scales in multijet production in e+ e− annihilation, JHEP 04 (2020) 112 [arXiv:1912.09396] [INSPIRE].

    ADS  Google Scholar 

  50. Sherpa collaboration, Event Generation with Sherpa 2.2, SciPost Phys. 7 (2019) 034 [arXiv:1905.09127] [INSPIRE].

  51. T. Gleisberg et al., Event generation with SHERPA 1.1, JHEP 02 (2009) 007 [arXiv:0811.4622] [INSPIRE].

    ADS  Google Scholar 

  52. T. Gleisberg and S. Höche, Comix, a new matrix element generator, JHEP 12 (2008) 039 [arXiv:0808.3674] [INSPIRE].

    ADS  Google Scholar 

  53. F. Krauss, R. Kuhn and G. Soff, AMEGIC++ 1.0: A matrix element generator in C++, JHEP 02 (2002) 044 [hep-ph/0109036] [INSPIRE].

    ADS  Google Scholar 

  54. T. Gleisberg and F. Krauss, Automating dipole subtraction for QCD NLO calculations, Eur. Phys. J. C 53 (2008) 501 [arXiv:0709.2881] [INSPIRE].

    ADS  Google Scholar 

  55. S. Schumann and F. Krauss, A parton shower algorithm based on Catani-Seymour dipole factorisation, JHEP 03 (2008) 038 [arXiv:0709.1027] [INSPIRE].

    ADS  Google Scholar 

  56. D.R. Yennie, S.C. Frautschi and H. Suura, The infrared divergence phenomena and high-energy processes, Annals Phys. 13 (1961) 379 [INSPIRE].

    ADS  Google Scholar 

  57. M. Schönherr and F. Krauss, Soft Photon Radiation in Particle Decays in SHERPA, JHEP 12 (2008) 018 [arXiv:0810.5071] [INSPIRE].

    ADS  Google Scholar 

  58. S. Actis, A. Denner, L. Hofer, J.-N. Lang, A. Scharf and S. Uccirati, RECOLA: REcursive Computation of One-Loop Amplitudes, Comput. Phys. Commun. 214 (2017) 140 [arXiv:1605.01090] [INSPIRE].

    ADS  MATH  Google Scholar 

  59. S. Actis, A. Denner, L. Hofer, A. Scharf and S. Uccirati, Recursive generation of one-loop amplitudes in the Standard Model, JHEP 04 (2013) 037 [arXiv:1211.6316] [INSPIRE].

    ADS  Google Scholar 

  60. A. Denner, S. Dittmaier and L. Hofer, COLLIER - A fortran-library for one-loop integrals, PoS LL2014 (2014) 071 [arXiv:1407.0087] [INSPIRE].

  61. A. Denner, S. Dittmaier and L. Hofer, COLLIER: a fortran-based Complex One-Loop LIbrary in Extended Regularizations, Comput. Phys. Commun. 212 (2017) 220 [arXiv:1604.06792] [INSPIRE].

    ADS  MATH  Google Scholar 

  62. G. ’t Hooft and M.J.G. Veltman, Scalar One Loop Integrals, Nucl. Phys. B 153 (1979) 365 [INSPIRE].

  63. W. Beenakker and A. Denner, Infrared Divergent Scalar Box Integrals with Applications in the Electroweak Standard Model, Nucl. Phys. B 338 (1990) 349 [INSPIRE].

    ADS  Google Scholar 

  64. S. Dittmaier, Separation of soft and collinear singularities from one loop N point integrals, Nucl. Phys. B 675 (2003) 447 [hep-ph/0308246] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. A. Denner and S. Dittmaier, Scalar one-loop 4-point integrals, Nucl. Phys. B 844 (2011) 199 [arXiv:1005.2076] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  66. G. Passarino and M.J.G. Veltman, One Loop Corrections for e+ e− Annihilation Into μ+ μ− in the Weinberg Model, Nucl. Phys. B 160 (1979) 151 [INSPIRE].

    ADS  Google Scholar 

  67. A. Denner and S. Dittmaier, Reduction of one loop tensor five point integrals, Nucl. Phys. B 658 (2003) 175 [hep-ph/0212259] [INSPIRE].

    ADS  MATH  Google Scholar 

  68. A. Denner and S. Dittmaier, Reduction schemes for one-loop tensor integrals, Nucl. Phys. B 734 (2006) 62 [hep-ph/0509141] [INSPIRE].

    ADS  MATH  Google Scholar 

  69. A. Denner, J.-N. Lang and S. Uccirati, RECOLA2: REcursive Computation of One-Loop Amplitudes 2, Comput. Phys. Commun. 224 (2018) 346 [arXiv:1711.07388] [INSPIRE].

    ADS  Google Scholar 

  70. M. Chiesa, A. Denner, J.-N. Lang and M. Pellen, An event generator for same-sign W-boson scattering at the LHC including electroweak corrections, Eur. Phys. J. C 79 (2019) 788 [arXiv:1906.01863] [INSPIRE].

    ADS  Google Scholar 

  71. B. Biedermann, A. Denner and M. Pellen, Large electroweak corrections to vector-boson scattering at the Large Hadron Collider, Phys. Rev. Lett. 118 (2017) 261801 [arXiv:1611.02951] [INSPIRE].

    ADS  Google Scholar 

  72. B. Biedermann, A. Denner and M. Pellen, Complete NLO corrections to W+ W+ scattering and its irreducible background at the LHC, JHEP 10 (2017) 124 [arXiv:1708.00268] [INSPIRE].

    ADS  Google Scholar 

  73. S. Kallweit, J.M. Lindert, P. Maierhöfer, S. Pozzorini and M. Schönherr, NLO electroweak automation and precise predictions for W+multijet production at the LHC, JHEP 04 (2015) 012 [arXiv:1412.5157] [INSPIRE].

    Google Scholar 

  74. M. Chiesa, N. Greiner, M. Schönherr and F. Tramontano, Electroweak corrections to diphoton plus jets, JHEP 10 (2017) 181 [arXiv:1706.09022] [INSPIRE].

    ADS  Google Scholar 

  75. N. Greiner and M. Schönherr, NLO QCD+EW corrections to diphoton production in association with a vector boson, JHEP 01 (2018) 079 [arXiv:1710.11514] [INSPIRE].

    ADS  Google Scholar 

  76. J. Andersen et al., Les Houches 2017: Physics at TeV Colliders Standard Model Working Group Report, in proceedings of 2017 Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, 5–23 June 2017, arXiv:1803.07977.

  77. NNPDF collaboration, Illuminating the photon content of the proton within a global PDF analysis, SciPost Phys. 5 (2018) 008 [arXiv:1712.07053] [INSPIRE].

  78. A. Buckley et al., LHAPDF6: parton density access in the LHC precision era, Eur. Phys. J. C 75 (2015) 132 [arXiv:1412.7420] [INSPIRE].

    ADS  Google Scholar 

  79. A. Manohar, P. Nason, G.P. Salam and G. Zanderighi, How bright is the proton? A precise determination of the photon parton distribution function, Phys. Rev. Lett. 117 (2016) 242002 [arXiv:1607.04266] [INSPIRE].

    ADS  Google Scholar 

  80. A. Denner, S. Dittmaier, M. Roth and D. Wackeroth, Electroweak radiative corrections to e+ e− → W W → 4 fermions in double pole approximation: The RACOONWW approach, Nucl. Phys. B 587 (2000) 67 [hep-ph/0006307] [INSPIRE].

    ADS  Google Scholar 

  81. S. Dittmaier and M. Krämer, Electroweak radiative corrections to W boson production at hadron colliders, Phys. Rev. D 65 (2002) 073007 [hep-ph/0109062] [INSPIRE].

    ADS  Google Scholar 

  82. LHC Higgs Cross Section Working Group collaboration, Handbook of LHC Higgs Cross Sections: 3. Higgs Properties, arXiv:1307.1347 [INSPIRE].

  83. D. Bardin, A. Leike, T. Riemann and M. Sachwitz, Energy Dependent Width Effects in e+ e− Annihilation Near the Z Boson Pole, Phys. Lett. B 206 (1988) 539 [INSPIRE].

    ADS  Google Scholar 

  84. M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].

    ADS  MATH  Google Scholar 

  85. A. Buckley et al., Rivet user manual, Comput. Phys. Commun. 184 (2013) 2803 [arXiv:1003.0694] [INSPIRE].

    ADS  Google Scholar 

  86. E. Bothmann, M. Schönherr and S. Schumann, Reweighting QCD matrix-element and parton-shower calculations, Eur. Phys. J. C 76 (2016) 590 [arXiv:1606.08753] [INSPIRE].

    ADS  Google Scholar 

  87. A. Denner and S. Pozzorini, One loop leading logarithms in electroweak radiative corrections. 1. Results, Eur. Phys. J. C 18 (2001) 461 [hep-ph/0010201] [INSPIRE].

    ADS  Google Scholar 

  88. J.-y. Chiu, R. Kelley and A.V. Manohar, Electroweak Corrections using Effective Field Theory: Applications to the LHC, Phys. Rev. D 78 (2008) 073006 [arXiv:0806.1240] [INSPIRE].

    ADS  Google Scholar 

  89. J.-y. Chiu, A. Fuhrer, R. Kelley and A.V. Manohar, Soft and Collinear Functions for the Standard Model, Phys. Rev. D 81 (2010) 014023 [arXiv:0909.0947] [INSPIRE].

    ADS  Google Scholar 

  90. J.R. Andersen et al., Les Houches 2015: Physics at TeV Colliders Standard Model Working Group Report, in 9th Les Houches Workshop on Physics at TeV Colliders, Les Houches, France, 1–19 June 2015, arXiv:1605.04692 [INSPIRE].

  91. S. Höche, J. Huang, G. Luisoni, M. Schönherr and J. Winter, Zero and one jet combined next-to-leading order analysis of the top quark forward-backward asymmetry, Phys. Rev. D 88 (2013) 014040 [arXiv:1306.2703] [INSPIRE].

    ADS  Google Scholar 

  92. S. Höche, F. Krauss and M. Schönherr, Uncertainties in MEPS@NLO calculations of h+jets, Phys. Rev. D 90 (2014) 014012 [arXiv:1401.7971] [INSPIRE].

    ADS  Google Scholar 

  93. S. Höche, F. Krauss, P. Maierhöfer, S. Pozzorini, M. Schönherr and F. Siegert, Next-to-leading order QCD predictions for top-quark pair production with up to two jets merged with a parton shower, Phys. Lett. B 748 (2015) 74 [arXiv:1402.6293] [INSPIRE].

    ADS  Google Scholar 

  94. M. Chiesa, C. Oleari and E. Re, NLO QCD+NLO EW corrections to diboson production matched to parton shower, Eur. Phys. J. C 80 (2020) 849 [arXiv:2005.12146] [INSPIRE].

    ADS  Google Scholar 

  95. ALEPH collaboration, First measurement of the quark to photon fragmentation function, Z. Phys. C 69 (1996) 365 [INSPIRE].

Download references

Author information

Authors and Affiliations

  1. Georg-August Universität Göttingen, Institut für Theoretische Physik, Friedrich-Hund-Platz 1, 37077, Göttingen, Germany

    Stephan Bräuer & Steffen Schumann

  2. Universität Würzburg, Institut für Theoretische Physik und Astrophysik, Emil-Hilb-Weg 22, 97074, Würzburg, Germany

    Ansgar Denner

  3. University of Cambridge, Cavendish Laboratory, 19 JJ Thomson Avenue, Cambridge, CB3 0HE, United Kingdom

    Mathieu Pellen

  4. Institute for Particle Physics Phenomenology, Durham University, Durham, DH1 3LE, United Kingdom

    Marek Schönherr

Authors
  1. Stephan Bräuer
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Ansgar Denner
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Mathieu Pellen
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Marek Schönherr
    View author publications

    You can also search for this author in PubMed Google Scholar

  5. Steffen Schumann
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Mathieu Pellen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.12128

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bräuer, S., Denner, A., Pellen, M. et al. Fixed-order and merged parton-shower predictions for WW and WWj production at the LHC including NLO QCD and EW corrections. J. High Energ. Phys. 2020, 159 (2020). https://doi.org/10.1007/JHEP10(2020)159

Download citation

  • Received: 02 June 2020

  • Revised: 10 September 2020

  • Accepted: 22 September 2020

  • Published: 26 October 2020

  • DOI: https://doi.org/10.1007/JHEP10(2020)159

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • NLO Computations
  • QCD Phenomenology
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.