Skip to main content

J/ψ elliptic and triangular flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV

A preprint version of the article is available at arXiv.

Abstract

The inclusive J/ψ elliptic (v2) and triangular (v3) flow coefficients measured at forward rapidity (2.5 < y < 4) and the v2 measured at midrapidity (|y| < 0.9) in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV using the ALICE detector at the LHC are reported. The entire Pb-Pb data sample collected during Run 2 is employed, amounting to an integrated luminosity of 750 μb1 at forward rapidity and 93 μb1 at midrapidity. The results are obtained using the scalar product method and are reported as a function of transverse momentum pT and collision centrality. At midrapidity, the J/ψ v2 is in agreement with the forward rapidity measurement. The centrality averaged results indicate a positive J/ψ v3 with a significance of more than 5σ at forward rapidity in the pT range 2 < pT < 5 GeV/c. The forward rapidity v2, v3, and v3/v2 results at low and intermediate pT (pT ≲ 8 GeV/c) exhibit a mass hierarchy when compared to pions and D mesons, while converging into a species-independent curve at higher pT. At low and intermediate pT, the results could be interpreted in terms of a later thermalization of charm quarks compared to light quarks, while at high pT, path-length dependent effects seem to dominate. The J/ψ v2 measurements are further compared to a microscopic transport model calculation. Using a simplified extension of the quark scaling approach involving both light and charm quark flow components, it is shown that the D-meson vn measurements can be described based on those for charged pions and J/ψ flow.

References

  1. P. Kovtun, D.T. Son and A.O. Starinets, Viscosity in strongly interacting quantum field theories from black hole physics, Phys. Rev. Lett. 94 (2005) 111601 [hep-th/0405231] [INSPIRE].

    ADS  Article  Google Scholar 

  2. S.A. Voloshin, A.M. Poskanzer and R. Snellings, Collective phenomena in non-central nuclear collisions, in Relativistic heavy ion physics, R. Stock ed., Landolt-Bornstein 23 (2010) 293 [arXiv:0809.2949] [INSPIRE].

  3. P. Romatschke, New developments in relativistic viscous hydrodynamics, Int. J. Mod. Phys. E 19 (2010) 1 [arXiv:0902.3663] [INSPIRE].

    ADS  Article  Google Scholar 

  4. J.-Y. Ollitrault, Anisotropy as a signature of transverse collective flow, Phys. Rev. D 46 (1992) 229 [INSPIRE].

    ADS  Article  Google Scholar 

  5. S. Voloshin and Y. Zhang, Flow study in relativistic nuclear collisions by Fourier expansion of azimuthal particle distributions, Z. Phys. C 70 (1996) 665 [hep-ph/9407282] [INSPIRE].

  6. Z. Qiu and U.W. Heinz, Event-by-event shape and flow fluctuations of relativistic heavy-ion collision fireballs, Phys. Rev. C 84 (2011) 024911 [arXiv:1104.0650] [INSPIRE].

  7. D.A. Teaney, Viscous hydrodynamics and the quark gluon plasma, in Quark-gluon plasma 4, R.C. Hwa and X.-N. Wang eds., World Scientific, Singapore (2010), pg. 207 [arXiv:0905.2433] [INSPIRE].

  8. M. Luzum and P. Romatschke, Conformal relativistic viscous hydrodynamics: applications to RHIC results at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. C 78 (2008) 034915 [Erratum ibid. 79 (2009) 039903] [arXiv:0804.4015] [INSPIRE].

  9. B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81 (2010) 054905 [Erratum ibid. 82 (2010) 039903] [arXiv:1003.0194] [INSPIRE].

  10. D. Teaney and L. Yan, Triangularity and dipole asymmetry in heavy ion collisions, Phys. Rev. C 83 (2011) 064904 [arXiv:1010.1876] [INSPIRE].

  11. H. Niemi, G.S. Denicol, H. Holopainen and P. Huovinen, Event-by-event distributions of azimuthal asymmetries in ultrarelativistic heavy-ion collisions, Phys. Rev. C 87 (2013) 054901 [arXiv:1212.1008] [INSPIRE].

  12. F.G. Gardim, F. Grassi, M. Luzum and J.-Y. Ollitrault, Mapping the hydrodynamic response to the initial geometry in heavy-ion collisions, Phys. Rev. C 85 (2012) 024908 [arXiv:1111.6538] [INSPIRE].

  13. F.G. Gardim, J. Noronha-Hostler, M. Luzum and F. Grassi, Effects of viscosity on the mapping of initial to final state in heavy ion collisions, Phys. Rev. C 91 (2015) 034902 [arXiv:1411.2574] [INSPIRE].

  14. ALICE collaboration, Linear and non-linear flow modes in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 773 (2017) 68 [arXiv:1705.04377] [INSPIRE].

  15. ALICE collaboration, Linear and non-linear flow modes of charged hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 05 (2020) 085 [arXiv:2002.00633] [INSPIRE].

  16. ALICE collaboration, Elliptic flow of identified hadrons in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 06 (2015) 190 [arXiv:1405.4632] [INSPIRE].

  17. ALICE collaboration, Anisotropic flow of identified particles in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 09 (2018) 006 [arXiv:1805.04390] [INSPIRE].

  18. B. Betz et al., Cumulants and nonlinear response of high pT harmonic flow at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. C 95 (2017) 044901 [arXiv:1609.05171] [INSPIRE].

  19. CMS collaboration, Study of high-pT charged particle suppression in Pb-Pb compared to pp collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Eur. Phys. J. C 72 (2012) 1945 [arXiv:1202.2554] [INSPIRE].

  20. N. Armesto, A. Dainese, C.A. Salgado and U.A. Wiedemann, Testing the color charge and mass dependence of parton energy loss with heavy-to-light ratios at RHIC and CERN LHC, Phys. Rev. D 71 (2005) 054027 [hep-ph/0501225] [INSPIRE].

  21. STAR collaboration, Particle type dependence of azimuthal anisotropy and nuclear modification of particle production in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 92 (2004) 052302 [nucl-ex/0306007] [INSPIRE].

  22. PHENIX collaboration, Elliptic flow for ϕ mesons and (anti)deuterons in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 99 (2007) 052301 [nucl-ex/0703024] [INSPIRE].

  23. STAR collaboration, Centrality dependence of identified particle elliptic flow in relativistic heavy ion collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 7.762.4 GeV, Phys. Rev. C 93 (2016) 014907 [arXiv:1509.08397] [INSPIRE].

  24. D. Molnar and S.A. Voloshin, Elliptic flow at large transverse momenta from quark coalescence, Phys. Rev. Lett. 91 (2003) 092301 [nucl-th/0302014] [INSPIRE].

  25. Z.-w. Lin and D. Molnar, Quark coalescence and elliptic flow of charm hadrons, Phys. Rev. C 68 (2003) 044901 [nucl-th/0304045] [INSPIRE].

  26. STAR collaboration, Multi-strange baryon elliptic flow in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 95 (2005) 122301 [nucl-ex/0504022] [INSPIRE].

  27. R.J. Fries, V. Greco and P. Sorensen, Coalescence models for hadron formation from quark gluon plasma, Ann. Rev. Nucl. Part. Sci. 58 (2008) 177 [arXiv:0807.4939] [INSPIRE].

    ADS  Article  Google Scholar 

  28. STAR collaboration, Azimuthal anisotropy in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. C 72 (2005) 014904 [nucl-ex/0409033] [INSPIRE].

  29. T. Matsui and H. Satz, J/ψ suppression by quark-gluon plasma formation, Phys. Lett. B 178 (1986) 416 [INSPIRE].

    ADS  Article  Google Scholar 

  30. S. Digal, P. Petreczky and H. Satz, Quarkonium feed down and sequential suppression, Phys. Rev. D 64 (2001) 094015 [hep-ph/0106017] [INSPIRE].

  31. A. Rothkopf, Heavy quarkonium in extreme conditions, Phys. Rept. 858 (2020) 1 [arXiv:1912.02253] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  32. F. Riek and R. Rapp, Quarkonia and heavy-quark relaxation times in the quark-gluon plasma, Phys. Rev. C 82 (2010) 035201 [arXiv:1005.0769] [INSPIRE].

  33. F. Scardina, S.K. Das, V. Minissale, S. Plumari and V. Greco, Estimating the charm quark diffusion coefficient and thermalization time from D meson spectra at energies available at the BNL Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, Phys. Rev. C 96 (2017) 044905 [arXiv:1707.05452] [INSPIRE].

  34. PHENIX collaboration, J/ψ production vs. centrality, transverse momentum, and rapidity in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 98 (2007) 232301 [nucl-ex/0611020] [INSPIRE].

  35. ALICE collaboration, J/ψ suppression at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. Lett. 109 (2012) 072301 [arXiv:1202.1383] [INSPIRE].

  36. ALICE collaboration, Centrality, rapidity and transverse momentum dependence of J/ψ suppression in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 734 (2014) 314 [arXiv:1311.0214] [INSPIRE].

  37. ALICE collaboration, J/ψ suppression at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Lett. B 766 (2017) 212 [arXiv:1606.08197] [INSPIRE].

  38. P. Braun-Munzinger and J. Stachel, (Non)thermal aspects of charmonium production and a new look at J/ψ suppression, Phys. Lett. B 490 (2000) 196 [nucl-th/0007059] [INSPIRE].

  39. X. Du and R. Rapp, Sequential regeneration of charmonia in heavy-ion collisions, Nucl. Phys. A 943 (2015) 147 [arXiv:1504.00670] [INSPIRE].

    ADS  Article  Google Scholar 

  40. X. Du, R. Rapp and M. He, Color screening and regeneration of bottomonia in high-energy heavy-ion collisions, Phys. Rev. C 96 (2017) 054901 [arXiv:1706.08670] [INSPIRE].

  41. K. Zhou, N. Xu, Z. Xu and P. Zhuang, Medium effects on charmonium production at ultrarelativistic energies available at the CERN Large Hadron Collider, Phys. Rev. C 89 (2014) 054911 [arXiv:1401.5845] [INSPIRE].

  42. A. Andronic, P. Braun-Munzinger, M.K. Köhler, K. Redlich and J. Stachel, Transverse momentum distributions of charmonium states with the statistical hadronization model, Phys. Lett. B 797 (2019) 134836 [arXiv:1901.09200] [INSPIRE].

    Article  Google Scholar 

  43. CMS collaboration, Measurement of prompt D0 meson azimuthal anisotropy in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 120 (2018) 202301 [arXiv:1708.03497] [INSPIRE].

  44. ALICE collaboration, Event-shape engineering for the D-meson elliptic flow in mid-central Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 02 (2019) 150 [arXiv:1809.09371] [INSPIRE].

  45. ALICE collaboration, D-meson azimuthal anisotropy in midcentral Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 120 (2018) 102301 [arXiv:1707.01005] [INSPIRE].

  46. CMS collaboration, Suppression and azimuthal anisotropy of prompt and nonprompt J/ψ production in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Eur. Phys. J. C 77 (2017) 252 [arXiv:1610.00613] [INSPIRE].

  47. ALICE collaboration, J/ψ elliptic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, Phys. Rev. Lett. 119 (2017) 242301 [arXiv:1709.05260] [INSPIRE].

  48. ALICE collaboration, Study of J/ψ azimuthal anisotropy at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 02 (2019) 012 [arXiv:1811.12727] [INSPIRE].

  49. ATLAS collaboration, Prompt and non-prompt J/ψ elliptic flow in Pb+Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV with the ATLAS detector, Eur. Phys. J. C 78 (2018) 784 [arXiv:1807.05198] [INSPIRE].

  50. F. Arleo, Quenching of hadron spectra in heavy ion collisions at the LHC, Phys. Rev. Lett. 119 (2017) 062302 [arXiv:1703.10852] [INSPIRE].

  51. M. Spousta, On similarity of jet quenching and charmonia suppression, Phys. Lett. B 767 (2017) 10 [arXiv:1606.00903] [INSPIRE].

    ADS  Article  Google Scholar 

  52. ALICE collaboration, The ALICE experiment at the CERN LHC, 2008 JINST 3 S08002 [INSPIRE].

  53. ALICE collaboration, Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044 [arXiv:1402.4476] [INSPIRE].

  54. ALICE collaboration, Alignment of the ALICE inner tracking system with cosmic-ray tracks, 2010 JINST 5 P03003 [arXiv:1001.0502] [INSPIRE].

  55. J. Alme et al., The ALICE TPC, a large 3-dimensional tracking device with fast readout for ultra-high multiplicity events, Nucl. Instrum. Meth. A 622 (2010) 316 [arXiv:1001.1950] [INSPIRE].

    ADS  Article  Google Scholar 

  56. ALICE collaboration, Performance of the ALICE VZERO system, 2013 JINST 8 P10016 [arXiv:1306.3130] [INSPIRE].

  57. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  58. ALICE collaboration, Centrality determination in heavy ion collisions, ALICE-PUBLIC-2018-011, CERN, Geneva, Switzerland (2018).

  59. ALICE collaboration, Measurement of the cross section for electromagnetic dissociation with neutron emission in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Rev. Lett. 109 (2012) 252302 [arXiv:1203.2436] [INSPIRE].

  60. ALICE collaboration, Centrality determination of Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV with ALICE, Phys. Rev. C 88 (2013) 044909 [arXiv:1301.4361] [INSPIRE].

  61. STAR collaboration, Elliptic flow from two and four particle correlations in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 130 GeV, Phys. Rev. C 66 (2002) 034904 [nucl-ex/0206001] [INSPIRE].

  62. M. Luzum and J.-Y. Ollitrault, Eliminating experimental bias in anisotropic-flow measurements of high-energy nuclear collisions, Phys. Rev. C 87 (2013) 044907 [arXiv:1209.2323] [INSPIRE].

  63. I. Selyuzhenkov and S. Voloshin, Effects of non-uniform acceptance in anisotropic flow measurement, Phys. Rev. C 77 (2008) 034904 [arXiv:0707.4672] [INSPIRE].

  64. ALICE collaboration, Rapidity and transverse momentum dependence of inclusive J/ψ production in pp collisions at \( \sqrt{s} \) = 7 TeV, Phys. Lett. B 704 (2011) 442 [Erratum ibid. 718 (2012) 692] [arXiv:1105.0380] [INSPIRE].

  65. ALICE collaboration, Differential studies of inclusive J/ψ and ψ(2S) production at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, JHEP 05 (2016) 179 [arXiv:1506.08804] [INSPIRE].

  66. ALICE collaboration, Quarkonium signal extraction in ALICE, ALICE-PUBLIC-2015-006, CERN, Geneva, Switzerland (2015).

  67. ALICE collaboration, Energy dependence of forward-rapidity J/ψ and ψ(2S) production in pp collisions at the LHC, Eur. Phys. J. C 77 (2017) 392 [arXiv:1702.00557] [INSPIRE].

  68. ALICE collaboration, Transverse-momentum and event-shape dependence of D-meson flow harmonics in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, arXiv:2005.11131 [INSPIRE].

  69. CMS collaboration, Pseudorapidity and transverse momentum dependence of flow harmonics in p-Pb and Pb-Pb collisions, Phys. Rev. C 98 (2018) 044902 [arXiv:1710.07864] [INSPIRE].

  70. ALICE collaboration, Anisotropic flow of charged hadrons, pions and (anti-)protons measured at high transverse momentum in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV, Phys. Lett. B 719 (2013) 18 [arXiv:1205.5761] [INSPIRE].

  71. ATLAS collaboration, Measurement of event-plane correlations in \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 90 (2014) 024905 [arXiv:1403.0489] [INSPIRE].

  72. STAR collaboration, Azimuthal anisotropy at RHIC: the first and fourth harmonics, Phys. Rev. Lett. 92 (2004) 062301 [nucl-ex/0310029] [INSPIRE].

  73. PHENIX collaboration, Elliptic and hexadecapole flow of charged hadrons in Au+Au collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 200 GeV, Phys. Rev. Lett. 105 (2010) 062301 [arXiv:1003.5586] [INSPIRE].

  74. ATLAS collaboration, Measurement of the azimuthal anisotropy for charged particle production in \( \sqrt{s_{\mathrm{NN}}} \) = 2.76 TeV lead-lead collisions with the ATLAS detector, Phys. Rev. C 86 (2012) 014907 [arXiv:1203.3087] [INSPIRE].

  75. ALICE collaboration, Energy dependence and fluctuations of anisotropic flow in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 and 2.76 TeV, JHEP 07 (2018) 103 [arXiv:1804.02944] [INSPIRE].

  76. ALICE collaboration, Studies of J/ψ production at forward rapidity in Pb-Pb collisions at \( \sqrt{s_{\mathrm{NN}}} \) = 5.02 TeV, JHEP 02 (2020) 041 [arXiv:1909.03158] [INSPIRE].

  77. A. Beraudo et al., Extraction of heavy-flavor transport coefficients in QCD matter, Nucl. Phys. A 979 (2018) 21 [arXiv:1803.03824] [INSPIRE].

    ADS  Article  Google Scholar 

  78. T. Song et al., Tomography of the quark-gluon-plasma by charm quarks, Phys. Rev. C 92 (2015) 014910 [arXiv:1503.03039] [INSPIRE].

  79. S. Cao and S.A. Bass, Thermalization of charm quarks in infinite and finite QGP matter, Phys. Rev. C 84 (2011) 064902 [arXiv:1108.5101] [INSPIRE].

  80. L. Zheng, H. Li, H. Qin, Q.-Y. Shou and Z.-B. Yin, Investigating the NCQ scaling of elliptic flow at LHC with a multiphase transport model, Eur. Phys. J. A 53 (2017) 124 [arXiv:1611.05185] [INSPIRE].

    ADS  Article  Google Scholar 

  81. S. Singha and M. Nasim, Scaling of elliptic flow in heavy-ion collisions with the number of constituent quarks in a transport model, Phys. Rev. C 93 (2016) 034908 [arXiv:1603.01220] [INSPIRE].

  82. J. Jia and C. Zhang, Quark number scaling of v2 in transverse kinetic energy and it’s implications for coalescence models, Phys. Rev. C 75 (2007) 031901 [hep-ph/0608187] [INSPIRE].

Download references

Author information

Affiliations

Authors