Skip to main content

Analytical description of CP violation in oscillations of atmospheric neutrinos traversing the Earth

A preprint version of the article is available at arXiv.


Flavour oscillations of sub-GeV atmospheric neutrinos and antineutrinos, traversing different distances inside the Earth, are a promising source of information on the leptonic CP phase δ. In that energy range, the oscillations are very fast, far beyond the resolution of modern neutrino detectors. However, the necessary averaging over the experimentally typical energy and azimuthal angle bins does not wash out the CP violation effects. In this paper we derive very accurate analytic compact expressions for the averaged oscillations probabilities. Assuming spherically symmetric Earth, the averaged oscillation probabilities are described in terms of two analytically calculable effective parameters. Based on those expressions, we estimate maximal magnitude of CP-violation effects in such measurements and propose optimal observables best suited to determine the value of the CP phase in the PMNS mixing matrix.


  1. A. Donini, M.B. Gavela, P. Hernández and S. Rigolin, Neutrino mixing and CP-violation, Nucl. Phys. B 574 (2000) 23 [hep-ph/9909254] [INSPIRE].

    ADS  Article  Google Scholar 

  2. T. Ohlsson and H. Snellman, Neutrino oscillations with three flavors in matter: Applications to neutrinos traversing the Earth, Phys. Lett. B 474 (2000) 153 [Erratum ibid. 480 (2000) 419] [hep-ph/9912295] [INSPIRE].

  3. Y. Farzan and A. Smirnov, Leptonic unitarity triangle and CP-violation, Phys. Rev. D 65 (2002) 113001 [hep-ph/0201105] [INSPIRE].

    ADS  Article  Google Scholar 

  4. H. Nunokawa, S.J. Parke and J.W.F. Valle, CP violation and neutrino oscillations, Prog. Part. Nucl. Phys. 60 (2008) 338 [arXiv:0710.0554] [INSPIRE].

    ADS  Article  Google Scholar 

  5. E.K. Akhmedov, M. Maltoni and A.Y. Smirnov, Neutrino oscillograms of the Earth: effects of 1-2 mixing and CP-violation, JHEP 06 (2008) 072 [arXiv:0804.1466] [INSPIRE].

    ADS  Article  Google Scholar 

  6. G.C. Branco, R. Felipe and F.R. Joaquim, Leptonic CP-violation, Rev. Mod. Phys. 84 (2012) 515 [arXiv:1111.5332] [INSPIRE].

    ADS  Article  Google Scholar 

  7. T. Ohlsson, H. Zhang and S. Zhou, Probing the leptonic Dirac CP-violating phase in neutrino oscillation experiments, Phys. Rev. D 87 (2013) 053006 [arXiv:1301.4333] [INSPIRE].

    ADS  Article  Google Scholar 

  8. S. Razzaque and A.Y. Smirnov, Super-PINGU for measurement of the leptonic CP-phase with atmospheric neutrinos, JHEP 05 (2015) 139 [arXiv:1406.1407] [INSPIRE].

    ADS  Article  Google Scholar 

  9. P.A.N. Machado, H. Minakata, H. Nunokawa and R. Zukanovich Funchal, What can we learn about the lepton CP phase in the next 10 years?, JHEP 05 (2014) 109 [arXiv:1307.3248] [INSPIRE].

    ADS  Article  Google Scholar 

  10. J. Bernabéu and A. Segarra, Disentangling genuine from matter-induced CP-violation in neutrino oscillations, Phys. Rev. Lett. 121 (2018) 211802 [arXiv:1806.07694] [INSPIRE].

    ADS  Article  Google Scholar 

  11. K.J. Kelly, P.A. Machado, I. Martinez Soler, S.J. Parke and Y.F. Perez Gonzalez, Sub-GeV atmospheric neutrinos and CP-violation in DUNE, Phys. Rev. Lett. 123 (2019) 081801 [arXiv:1904.02751] [INSPIRE].

    ADS  Article  Google Scholar 

  12. V.D. Barger, K. Whisnant, S. Pakvasa and R.J.N. Phillips, Matter effects on three-neutrino oscillations, Phys. Rev. D 22 (1980) 2718 [INSPIRE].

    ADS  Article  Google Scholar 

  13. A. Ioannisiani, CP violation, Athmospheric neutrinos, DUNE, talk given at the DUNE collaboration week , January 28–February 1, CERN (2019), and at the DUNE WG meeting, October 17 (2018).

  14. V.D. Barger, T.J. Weiler and K. Whisnant, Generalized neutrino mixing from the atmospheric anomaly, Phys. Lett. B 440 (1998) 1 [hep-ph/9807319] [INSPIRE].

    ADS  Article  Google Scholar 

  15. O.L.G. Peres and A. Smirnov, Atmospheric neutrinos: LMA oscillations, U(e3) induced interference and CP-violation, Nucl. Phys. B 680 (2004) 479 [hep-ph/0309312] [INSPIRE].

    ADS  Article  Google Scholar 

  16. A. Friedland, C. Lunardini and M. Maltoni, Atmospheric neutrinos as probes of neutrino-matter interactions, Phys. Rev. D 70 (2004) 111301 [hep-ph/0408264] [INSPIRE].

    ADS  Article  Google Scholar 

  17. P. Huber, M. Maltoni and T. Schwetz, Resolving parameter degeneracies in long-baseline experiments by atmospheric neutrino data, Phys. Rev. D 71 (2005) 053006 [hep-ph/0501037] [INSPIRE].

    ADS  Article  Google Scholar 

  18. E.A. Hay and D.C. Latimer, Implications of the Dirac CP phase upon parametric resonance for sub-GeV neutrinos, Phys. Rev. C 86 (2012) 035501 [arXiv:1207.5694].

    ADS  Article  Google Scholar 

  19. S.K. Agarwalla, T. Li, O. Mena and S. Palomares-Ruiz, Exploring the Earth matter effect with atmospheric neutrinos in ice, arXiv:1212.2238 [INSPIRE].

  20. M. Blennow and A.Y. Smirnov, Neutrino propagation in matter, Adv. High Energy Phys. 2013 (2013) 972485 [arXiv:1306.2903] [INSPIRE].

    Article  Google Scholar 

  21. DUNE collaboration, Long-Baseline Neutrino Facility (LBNF) and Deep Underground Neutrino Experiment (DUNE): conceptual design report, volume 2: the physics program for DUNE at LBNF, arXiv:1512.06148 [INSPIRE].

  22. Hyper-Kamiokande collaboration, Physics potentials with the second Hyper-Kamiokande detector in Korea, PTEP 2018 (2018) 063C01 [arXiv:1611.06118] [INSPIRE].

  23. L. Wolfenstein, Neutrino oscillations in matter, Phys. Rev. D 17 (1978) 2369 [INSPIRE].

    ADS  Article  Google Scholar 

  24. S.P. Mikheyev and A. Smirnov, Resonance Amplification of Oscillations in Matter and Spectroscopy of Solar Neutrinos, Sov. J. Nucl. Phys. 42 (1985) 913 [Yad. Fiz. 42 (1985) 1441] [INSPIRE].

  25. E.K. Akhmedov, Neutrino oscillations in inhomogeneous matter (in Russian), Sov. J. Nucl. Phys. 47 (1988) 301 [Yad. Fiz. 47 (1988) 475] [INSPIRE].

  26. A. Ioannisian and S. Pokorski, Three neutrino oscillations in matter, Phys. Lett. B 782 (2018) 641 [arXiv:1801.10488] [INSPIRE].

    ADS  Article  Google Scholar 

  27. X. Wang and S. Zhou, Analytical solutions to renormalization-group equations of effective neutrino masses and mixing parameters in matter, JHEP 05 (2019) 035 [arXiv:1901.10882] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  28. X. Wang and S. Zhou, On the Properties of the Effective Jarlskog Invariant for Three-flavor Neutrino Oscillations in Matter, Nucl. Phys. B 950 (2020) 114867 [arXiv:1908.07304] [INSPIRE].

    Article  Google Scholar 

  29. A.M. Dziewonski and D.L. Anderson, Preliminary reference Earth model, Phys. Earth Planet. Int. 25 (1981) 297.

    ADS  Article  Google Scholar 

  30. P.F. de Salas, D.V. Forero, C.A. Ternes, M. Tortola and J.W.F. Valle, Status of neutrino oscillations 2018: 3σ hint for normal mass ordering and improved CP sensitivity, Phys. Lett. B 782 (2018) 633 [arXiv:1708.01186] [INSPIRE].

    ADS  Article  Google Scholar 

  31. D. Indumathi, M.V.N. Murthy and L.S. Mohan, Hierarchy independent sensitivity to leptonic δCP with atmospheric neutrinos, Phys. Rev. D 100 (2019) 115027 [arXiv:1701.08997] [INSPIRE].

    ADS  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Janusz Rosiek.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2005.07719

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ioannisian, A., Pokorski, S., Rosiek, J. et al. Analytical description of CP violation in oscillations of atmospheric neutrinos traversing the Earth. J. High Energ. Phys. 2020, 120 (2020).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI:


  • CP violation
  • Neutrino Physics