Skip to main content
SpringerLink
Log in
Menu
Find a journal Publish with us
Search
Go to cart
  1. Home
  2. Journal of High Energy Physics
  3. Article
Carroll versus Galilei from a brane perspective
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

An action for extended string Newton-Cartan gravity

23 January 2019

Eric A. Bergshoeff, Kevin T. Grosvenor, … Ziqi Yan

The gauging procedure and carrollian gravity

29 September 2022

José Figueroa-O’Farrill, Emil Have, … Jakob Salzer

Non-abelian T-duality and Yang-Baxter deformations of Green-Schwarz strings

08 August 2018

Riccardo Borsato & Linus Wulff

Note about Hamiltonian formalism for Newton–Cartan string and p-brane

20 June 2018

Josef Klusoň

Note about D-branes in Carrollian background

19 August 2022

J. Klusoň

Spectral theories and topological strings on del Pezzo geometries

23 October 2020

Sanefumi Moriyama

Big bounce cosmology for Palatini $$R^2$$ R 2 gravity with a Nieh–Yan term

14 May 2019

Flavio Bombacigno & Giovanni Montani

Back to heterotic strings on ALE spaces. Part I. Instantons, 2-groups and T-duality

31 January 2023

Michele Del Zotto, Muyang Liu & Paul-Konstantin Oehlmann

Long way to Ricci flatness

09 October 2020

Jin Chen, Chao-Hsiang Sheu, … Alexei Yung

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 12 October 2020

Carroll versus Galilei from a brane perspective

  • Eric Bergshoeff  ORCID: orcid.org/0000-0003-1937-65371,
  • José Manuel Izquierdo2 &
  • Luca Romano  ORCID: orcid.org/0000-0001-9033-13451,3 

Journal of High Energy Physics volume 2020, Article number: 66 (2020) Cite this article

  • 174 Accesses

  • 9 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show that our previous work on Galilei and Carroll gravity, apt for particles, can be generalized to Galilei and Carroll gravity theories adapted to p-branes (p = 0, 1, 2, ⋯). Within this wider brane perspective, we make use of a formal map, given in the literature, between the corresponding p-brane Carroll and Galilei algebras where the index describing the directions longitudinal (transverse) to the Galilei brane is interchanged with the index covering the directions transverse (longitudinal) to the Carroll brane with the understanding that the time coordinate is always among the longitudinal directions. This leads among other things in 3D to a map between Galilei particles and Carroll strings and in 4D to a similar map between Galilei strings and Carroll strings. We show that this formal map extends to the corresponding Lie algebra expansion of the Poincaré algebra and, therefore, to several extensions of the Carroll and Galilei algebras including central extensions. We use this formal map to construct several new examples of Carroll gravity actions. Furthermore, we discuss the symmetry between Carroll and Galilei at the level of the p-brane sigma model action and apply this formal symmetry to give several examples of 3D and 4D particles and strings in a curved Carroll background.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. H. Bacry and J. Levy-Leblond, Possible kinematics, J. Math. Phys. 9 (1968) 1605 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  2. M. Henneaux, Geometry of Zero Signature Space-times, Bull. Soc. Math. Belg. 31 (1979) 47 [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  3. M. Henneaux, M. Pilati and C. Teitelboim, Explicit Solution for the Zero Signature (Strong Coupling) Limit of the Propagation Amplitude in Quantum Gravity, Phys. Lett. B 110 (1982) 123 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  4. T. Damour, M. Henneaux and H. Nicolai, Cosmological billiards, Class. Quant. Grav. 20 (2003) R145 [hep-th/0212256] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  5. C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll symmetry of plane gravitational waves, Class. Quant. Grav. 34 (2017) 175003 [arXiv:1702.08284] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  6. D.M. Hofman and B. Rollier, Warped Conformal Field Theory as Lower Spin Gravity, Nucl. Phys. B 897 (2015) 1 [arXiv:1411.0672] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Banks and W. Fischler, Holographic Space-time, Newton’s Law and the Dynamics of Black Holes, arXiv:1606.01267 [INSPIRE].

  8. C. Duval, G.W. Gibbons and P.A. Horvathy, Conformal Carroll groups and BMS symmetry, Class. Quant. Grav. 31 (2014) 092001 [arXiv:1402.5894] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  9. H. Bondi, M.G.J. van der Burg and A.W.K. Metzner, Gravitational waves in general relativity. VII. Waves from axisymmetric isolated systems, Proc. Roy. Soc. Lond. A 269 (1962) 21.

    Article  ADS  Google Scholar 

  10. E. Bergshoeff, J. Gomis and G. Longhi, Dynamics of Carroll Particles, Class. Quant. Grav. 31 (2014) 205009 [arXiv:1405.2264] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Bergshoeff, J. Gomis, B. Rollier, J. Rosseel and T. ter Veldhuis, Carroll versus Galilei Gravity, JHEP 03 (2017) 165 [arXiv:1701.06156] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  12. J. Hartong, Gauging the Carroll Algebra and Ultra-Relativistic Gravity, JHEP 08 (2015) 069 [arXiv:1505.05011] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. A. Bagchi, A. Mehra and P. Nandi, Field Theories with Conformal Carrollian Symmetry, JHEP 05 (2019) 108 [arXiv:1901.10147] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  14. D. Roychowdhury, Carroll membranes, JHEP 10 (2019) 258 [arXiv:1908.07280] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. L. Ravera, AdS Carroll Chern-Simons supergravity in 2 + 1 dimensions and its flat limit, Phys. Lett. B 795 (2019) 331 [arXiv:1905.00766] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. F. Ali and L. Ravera, \( \mathcal{N} \)-extended Chern-Simons Carrollian supergravities in 2 + 1 spacetime dimensions, JHEP 02 (2020) 128 [arXiv:1912.04172] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. J. Kluson, Carroll Limit of Non-BPS Dp-brane, JHEP 05 (2017) 108 [arXiv:1702.08685] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. C. Duval, G.W. Gibbons, P.A. Horvathy and P.M. Zhang, Carroll versus Newton and Galilei: two dual non-Einsteinian concepts of time, Class. Quant. Grav. 31 (2014) 085016 [arXiv:1402.0657] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  19. A. Barducci, R. Casalbuoni and J. Gomis, Confined dynamical systems with Carroll and Galilei symmetries, Phys. Rev. D 98 (2018) 085018 [arXiv:1804.10495] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. E. Bergshoeff, J. Gomis and L. Parra, The Symmetries of the Carroll Superparticle, J. Phys. A 49 (2016) 185402 [arXiv:1503.06083] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  21. B. Cardona, J. Gomis and J.M. Pons, Dynamics of Carroll Strings, JHEP 07 (2016) 050 [arXiv:1605.05483] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  22. M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized Inonu-Wigner contraction, Prog. Theor. Phys. 109 (2003) 853 [hep-th/0106114] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  23. J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons supergravity, Nucl. Phys. B 662 (2003) 185 [hep-th/0212347] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  24. J. Gomis, A. Kleinschmidt, J. Palmkvist and P. Salgado-ReboLledó, Newton-Hooke/Carrollian expansions of (A)dS and Chern-Simons gravity, JHEP 02 (2020) 009 [arXiv:1912.07564] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  25. E. Bergshoeff, J.M. Izquierdo, T. Ortín and L. Romano, Lie Algebra Expansions and Actions for Non-Relativistic Gravity, JHEP 08 (2019) 048 [arXiv:1904.08304] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  26. G. Papageorgiou and B.J. Schroers, A Chern-Simons approach to Galilean quantum gravity in 2+1 dimensions, JHEP 11 (2009) 009 [arXiv:0907.2880] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  27. E.A. Bergshoeff and J. Rosseel, Three-Dimensional Extended Bargmann Supergravity, Phys. Rev. Lett. 116 (2016) 251601 [arXiv:1604.08042] [INSPIRE].

    Article  ADS  Google Scholar 

  28. J. Hartong, Y. Lei and N.A. Obers, Nonrelativistic Chern-Simons theories and three-dimensional Hořava-Lifshitz gravity, Phys. Rev. D 94 (2016) 065027 [arXiv:1604.08054] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  29. D. Hansen, J. Hartong and N.A. Obers, Action Principle for Newtonian Gravity, Phys. Rev. Lett. 122 (2019) 061106 [arXiv:1807.04765] [INSPIRE].

    Article  ADS  Google Scholar 

  30. E.A. Bergshoeff, K.T. Grosvenor, C. Simsek and Z. Yan, An Action for Extended String Newton-Cartan Gravity, JHEP 01 (2019) 178 [arXiv:1810.09387] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  31. C. Batlle, J. Gomis, L. Mezincescu and P.K. Townsend, Tachyons in the Galilean limit, JHEP 04 (2017) 120 [arXiv:1702.04792] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  32. C. Batlle, J. Gomis and D. Not, Extended Galilean symmetries of non-relativistic strings, JHEP 02 (2017) 049 [arXiv:1611.00026] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. J.-M. Souriau, Structure des systèmes dynamiques, Dunod (1970).

  34. J.-M. Souriau, Structure of Dynamical Systems: A Symplectic View of Physics, translated by C.H. Cushman-de Vries, R.H. Cushman and G.M. Tuynman translation eds., Birkhäuser (1997).

  35. J. de Boer, J. Hartong, N.A. Obers, W. Sybesma and S. Vandoren, Perfect Fluids, SciPost Phys. 5 (2018) 003 [arXiv:1710.04708] [INSPIRE].

    Article  ADS  Google Scholar 

  36. E. Bergshoeff, J. Gomis and Z. Yan, Nonrelativistic String Theory and T-duality, JHEP 11 (2018) 133 [arXiv:1806.06071] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

  1. Van Swinderen Institute, University of Groningen, Nijenborgh 4, 9747, AG, Groningen, The Netherlands

    Eric Bergshoeff & Luca Romano

  2. Departamento de Física Teórica, Universidad de Valladolid, E-47011, Valladolid, Spain

    José Manuel Izquierdo

  3. Instituto de Física Teórica UAM/CSIC, C/ Nicolás Cabrera, 13–15, C.U. Cantoblanco, E-28049, Madrid, Spain

    Luca Romano

Authors
  1. Eric Bergshoeff
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. José Manuel Izquierdo
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Luca Romano
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Luca Romano.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

ArXiv ePrint: 2003.03062

Address after 01-01-20: Van Swinderen Institute, Groningen University (Luca Romano).

Rights and permissions

Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bergshoeff, E., Izquierdo, J.M. & Romano, L. Carroll versus Galilei from a brane perspective. J. High Energ. Phys. 2020, 66 (2020). https://doi.org/10.1007/JHEP10(2020)066

Download citation

  • Received: 11 April 2020

  • Revised: 11 August 2020

  • Accepted: 13 September 2020

  • Published: 12 October 2020

  • DOI: https://doi.org/10.1007/JHEP10(2020)066

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Classical Theories of Gravity
  • p-branes
  • Sigma Models
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support

Not affiliated

Springer Nature

© 2023 Springer Nature