Article PDF
References
U. Ellwanger, C. Hugonie and A.M. Teixeira, The Next-to-Minimal Supersymmetric Standard Model, Phys. Rept. 496 (2010) 1 [arXiv:0910.1785] [INSPIRE].
R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys. B 671 (2003) 148 [hep-ph/0306259] [INSPIRE].
B. Gripaios, A. Pomarol, F. Riva and J. Serra, Beyond the Minimal Composite Higgs Model, JHEP 04 (2009) 070 [arXiv:0902.1483] [INSPIRE].
M. Chala, h → γγ excess and Dark Matter from Composite Higgs Models, JHEP 01 (2013) 122 [arXiv:1210.6208] [INSPIRE].
L. Vecchi, The Natural Composite Higgs, arXiv:1304.4579 [INSPIRE].
B. Bellazzini, C. Csáki and J. Serra, Composite Higgses, Eur. Phys. J. C 74 (2014) 2766 [arXiv:1401.2457] [INSPIRE].
V. Sanz and J. Setford, Composite Higgses with seesaw EWSB, JHEP 12 (2015) 154 [arXiv:1508.06133] [INSPIRE].
T. Ma and G. Cacciapaglia, Fundamental Composite 2HDM: SU(N ) with 4 flavours, JHEP 03 (2016) 211 [arXiv:1508.07014] [INSPIRE].
A. Belyaev, G. Cacciapaglia, H. Cai, T. Flacke, A. Parolini and H. Serôdio, Singlets in composite Higgs models in light of the LHC 750 GeV diphoton excess, Phys. Rev. D 94 (2016) 015004 [arXiv:1512.07242] [INSPIRE].
M. Chala, G. Nardini and I. Sobolev, Unified explanation for dark matter and electroweak baryogenesis with direct detection and gravitational wave signatures, Phys. Rev. D 94 (2016) 055006 [arXiv:1605.08663] [INSPIRE].
B. Gripaios, M. Nardecchia and T. You, On the Structure of Anomalous Composite Higgs Models, Eur. Phys. J. C 77 (2017) 28 [arXiv:1605.09647] [INSPIRE].
M. Chala, R. Gröber and M. Spannowsky, Searches for vector-like quarks at future colliders and implications for composite Higgs models with dark matter, JHEP 03 (2018) 040 [arXiv:1801.06537] [INSPIRE].
M. Chala, R. Gröber and M. Spannowsky, Interplay between collider searches for vector-like quarks and dark matter searches in composite Higgs models, Int. J. Mod. Phys. A 34 (2019) 1940011 [INSPIRE].
G. Cacciapaglia, G. Ferretti, T. Flacke and H. Serôdio, Light scalars in composite Higgs models, Front. in Phys. 7 (2019) 22 [arXiv:1902.06890] [INSPIRE].
M. Ramos, Composite dark matter phenomenology in the presence of lighter degrees of freedom, JHEP 07 (2020) 128 [arXiv:1912.11061] [INSPIRE].
J.R. Espinosa, B. Gripaios, T. Konstandin and F. Riva, Electroweak Baryogenesis in Non-minimal Composite Higgs Models, JCAP 01 (2012) 012 [arXiv:1110.2876] [INSPIRE].
V. Vaskonen, Electroweak baryogenesis and gravitational waves from a real scalar singlet, Phys. Rev. D 95 (2017) 123515 [arXiv:1611.02073] [INSPIRE].
A. Beniwal, M. Lewicki, J.D. Wells, M. White and A.G. Williams, Gravitational wave, collider and dark matter signals from a scalar singlet electroweak baryogenesis, JHEP 08 (2017) 108 [arXiv:1702.06124] [INSPIRE].
Z. Kang, P. Ko and T. Matsui, Strong first order EWPT & strong gravitational waves in Z3 -symmetric singlet scalar extension, JHEP 02 (2018) 115 [arXiv:1706.09721] [INSPIRE].
B. Grzadkowski and D. Huang, Spontaneous C P -Violating Electroweak Baryogenesis and Dark Matter from a Complex Singlet Scalar, JHEP 08 (2018) 135 [arXiv:1807.06987] [INSPIRE].
S. De Curtis, L. Delle Rose and G. Panico, Composite Dynamics in the Early Universe, JHEP 12 (2019) 149 [arXiv:1909.07894] [INSPIRE].
J. Liu, C.E.M. Wagner and X.-P. Wang, A light complex scalar for the electron and muon anomalous magnetic moments, JHEP 03 (2019) 008 [arXiv:1810.11028] [INSPIRE].
N. Craig, H.K. Lou, M. McCullough and A. Thalapillil, The Higgs Portal Above Threshold, JHEP 02 (2016) 127 [arXiv:1412.0258] [INSPIRE].
M. Ruhdorfer, E. Salvioni and A. Weiler, A Global View of the Off-Shell Higgs Portal, SciPost Phys. 8 (2020) 027 [arXiv:1910.04170] [INSPIRE].
C.A. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett. 97 (2006) 131801 [hep-ex/0602020] [INSPIRE].
ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].
R. Franceschini et al., Digamma, what next?, JHEP 07 (2016) 150 [arXiv:1604.06446] [INSPIRE].
B. Gripaios and D. Sutherland, An operator basis for the Standard Model with an added scalar singlet, JHEP 08 (2016) 103 [arXiv:1604.07365] [INSPIRE].
S. Banerjee, M. Chala and M. Spannowsky, Top quark FCNCs in extended Higgs sectors, Eur. Phys. J. C 78 (2018) 683 [arXiv:1806.02836] [INSPIRE].
J.A. Aguilar-Saavedra and G.C. Branco, Probing top flavor changing neutral scalar couplings at the CERN LHC, Phys. Lett. B 495 (2000) 347 [hep-ph/0004190] [INSPIRE].
D. Atwood, S.K. Gupta and A. Soni, Constraining the flavor changing Higgs couplings to the top-quark at the LHC, JHEP 10 (2014) 057 [arXiv:1305.2427] [INSPIRE].
A. Papaefstathiou and G. Tetlalmatzi-Xolocotzi, Rare top quark decays at a 100 TeV proton-proton collider: t → bW Z and t → hc, Eur. Phys. J. C 78 (2018) 214 [arXiv:1712.06332] [INSPIRE].
ATLAS collaboration, Search for top quark decays t → qH , with H → γγ, in \( \sqrt{s} \) = 13 TeV pp collisions using the ATLAS detector, JHEP 10 (2017) 129 [arXiv:1707.01404] [INSPIRE].
ATLAS collaboration, Search for flavor-changing neutral currents in top quark decays t → H c and t → H u in multilepton final states in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, Phys. Rev. D 98 (2018) 032002 [arXiv:1805.03483] [INSPIRE].
M. Chala, J. Santiago and M. Spannowsky, Constraining four-fermion operators using rare top decays, JHEP 04 (2019) 014 [arXiv:1809.09624] [INSPIRE].
M. Barros et al., Study of interference effects in the search for flavour-changing neutral current interactions involving the top quark and a photon or a Z boson at the LHC, Eur. Phys. J. Plus 135 (2020) 339 [arXiv:1909.08443] [INSPIRE].
CMS collaboration, Search for Higgs boson off-shell production in proton-proton collisions at 7 and 8 TeV and derivation of constraints on its total decay width, JHEP 09 (2016) 051 [arXiv:1605.02329] [INSPIRE].
CMS collaboration, Search for low-mass resonances decaying into bottom quark-antiquark pairs in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, Phys. Rev. D 99 (2019) 012005 [arXiv:1810.11822] [INSPIRE].
CMS collaboration, Search for high mass dijet resonances with a new background prediction method in proton-proton collisions at \( \sqrt{s} \) = 13 TeV, JHEP 05 (2020) 033 [arXiv:1911.03947] [INSPIRE].
R. Harnik, J. Kopp and J. Zupan, Flavor Violating Higgs Decays, JHEP 03 (2013) 026 [arXiv:1209.1397] [INSPIRE].
UTfit collaboration, Model-independent constraints on ∆F = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].
Top Quark Working Group collaboration, Working Group Report: Top Quark, in Community Summer Study 2013: Snowmass on the Mississippi, 11, 2013 [arXiv:1311.2028] [INSPIRE].
Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].
D.B. Kaplan and H. Georgi, SU (2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett. B 136 (1984) 183 [INSPIRE].
D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett. B 136 (1984) 187 [INSPIRE].
ATLAS collaboration, Search for flavour-changing neutral current top-quark decays t → qZ in proton-proton collisions at \( \sqrt{s} \) = 13 TeV with the ATLAS detector, JHEP 07 (2018) 176 [arXiv:1803.09923] [INSPIRE].
R. Brun and F. Rademakers, ROOT: An object oriented data analysis framework, Nucl. Instrum. Meth. A 389 (1997) 81 [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, FastJet User Manual, Eur. Phys. J. C 72 (2012) 1896 [arXiv:1111.6097] [INSPIRE].
J. Alwall et al., The automated computation of tree-level and next-to-leading order differential cross sections, and their matching to parton shower simulations, JHEP 07 (2014) 079 [arXiv:1405.0301] [INSPIRE].
T. Sjöstrand et al., An introduction to PYTHIA 8.2, Comput. Phys. Commun. 191 (2015) 159 [arXiv:1410.3012] [INSPIRE].
M. Czakon and A. Mitov, Top++: A Program for the Calculation of the Top-Pair Cross-Section at Hadron Colliders, Comput. Phys. Commun. 185 (2014) 2930 [arXiv:1112.5675] [INSPIRE].
ATLAS collaboration, Search for supersymmetry in events with four or more leptons in \( \sqrt{s} \) = 13 TeV pp collisions with ATLAS, Phys. Rev. D 98 (2018) 032009 [arXiv:1804.03602] [INSPIRE].
L3 collaboration, A Study of four fermion processes at LEP, Phys. Lett. B 321 (1994) 283 [INSPIRE].
A. Alloul, N.D. Christensen, C. Degrande, C. Duhr and B. Fuks, FeynRules 2.0 — A complete toolbox for tree-level phenomenology, Comput. Phys. Commun. 185 (2014) 2250 [arXiv:1310.1921] [INSPIRE].
R.D. Ball et al., Parton distributions with LHC data, Nucl. Phys. B 867 (2013) 244 [arXiv:1207.1303] [INSPIRE].
DELPHES 3 collaboration, DELPHES 3, A modular framework for fast simulation of a generic collider experiment, JHEP 02 (2014) 057 [arXiv:1307.6346] [INSPIRE].
M. Cacciari, G.P. Salam and G. Soyez, The anti-kt jet clustering algorithm, JHEP 04 (2008) 063 [arXiv:0802.1189] [INSPIRE].
A.L. Read, Presentation of search results: The C Ls technique, J. Phys. G 28 (2002) 2693 [INSPIRE].
E. Busato, D. Calvet and T. Theveneaux-Pelzer, OpTHyLiC: an Optimised Tool for Hybrid Limits Computation, Comput. Phys. Commun. 226 (2018) 136 [arXiv:1502.02610] [INSPIRE].
Author information
Authors and Affiliations
Corresponding author
Additional information
Abstract We demonstrate that flavour-changing neutral currents in the top sector, mediated by leptophilic scalars at the electroweak scale, can easily arise in scenarios of new physics, and in particular in composite Higgs models. We moreover show that such inter- actions are poorly constrained by current experiments, while they can be searched for at the LHC in rare top decays and, more generally, in the channels pp → tS(S) + j, with S → ℓ+ℓ−. We provide dedicated analyses in this respect, obtaining that cut-off scales as large as Λ ∼ 90 TeV can be probed with an integrated luminosity of ℒ = 150 fb−1.
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2005.09594
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Castro, N., Chala, M., Peixoto, A. et al. Novel flavour-changing neutral currents in the top quark sector. J. High Energ. Phys. 2020, 38 (2020). https://doi.org/10.1007/JHEP10(2020)038
Received:
Revised:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2020)038