Abstract
We study several quiver Chern-Simons-matter theories on the three-sphere, combining the matrix model formulation with a systematic use of Mordell’s integral, computing partition functions and checking dualities. We also consider Wilson loops in ABJ(M) theories, distinguishing between typical (long) and atypical (short) representations and focusing on the former. Using the Berele-Regev factorization of supersymmetric Schur polynomials, we express the expectation value of the Wilson loops in terms of sums of observables of two factorized copies of U(N ) pure Chern-Simons theory on the sphere. Then, we use the Cauchy identity to study the partition functions of a number of quiver Chern-Simons-matter models and the result is interpreted as a perturbative expansion in the parameters tj = −e2πmj , where mj are the masses. Through the paper, we incorporate different generalizations, such as deformations by real masses and/or Fayet-Iliopoulos parameters, the consideration of a Romans mass in the gravity dual, and adjoint matter.
References
V. Pestun, Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys. 313 (2012) 71 [arXiv:0712.2824] [INSPIRE].
V. Pestun et al., Localization techniques in quantum field theories, J. Phys. A 50 (2017) 440301 [arXiv:1608.02952] [INSPIRE].
A. Kapustin, B. Willett and I. Yaakov, Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP 03 (2010) 089 [arXiv:0909.4559] [INSPIRE].
B. Willett, Localization on three-dimensional manifolds, J. Phys. A 50 (2017) 443006 [arXiv:1608.02958] [INSPIRE].
M. Mariño, Lectures on localization and matrix models in supersymmetric Chern-Simons-matter theories, J. Phys. A 44 (2011) 463001 [arXiv:1104.0783] [INSPIRE].
L.J. Mordell, The definite integral \( \underset{-\infty }{\overset{\infty }{\int }}\frac{e^{ax^2+ bx}}{e^{cx}+d} dx \) and the analytic theory of numbers, Acta Math. 61 (1933) 323.
J.G. Russo, G.A. Silva and M. Tierz, Supersymmetric U(N) Chern–Simons-Matter Theory and Phase Transitions, Commun. Math. Phys. 338 (2015) 1411 [arXiv:1407.4794] [INSPIRE].
G. Giasemidis and M. Tierz, Mordell integrals and Giveon-Kutasov duality, JHEP 01 (2016) 068 [arXiv:1511.00203] [INSPIRE].
J.G. Russo and F.A. Schaposnik, \( \mathcal{N} \) = 2 Chern-Simons-matter theories without vortices, JHEP 07 (2017) 062 [arXiv:1704.03266] [INSPIRE].
D.L. Jafferis and X. Yin, Chern-Simons-Matter Theory and Mirror Symmetry, arXiv:0810.1243 [INSPIRE].
O. Aharony, O. Bergman and D.L. Jafferis, Fractional M2-branes, JHEP 11 (2008) 043 [arXiv:0807.4924] [INSPIRE].
O. Aharony, O. Bergman, D.L. Jafferis and J. Maldacena, N = 6 superconformal Chern-Simons-matter theories, M2-branes and their gravity duals, JHEP 10 (2008) 091 [arXiv:0806.1218] [INSPIRE].
K. Okuyama, A Note on the Partition Function of ABJM theory on Sˆ3, Prog. Theor. Phys. 127 (2012) 229 [arXiv:1110.3555] [INSPIRE].
J.G. Russo and G.A. Silva, Exact partition function in U (2)×U (2) ABJM theory deformed by mass and Fayet-Iliopoulos terms, JHEP 12 (2015) 092 [arXiv:1510.02957] [INSPIRE].
H. Awata, S. Hirano and M. Shigemori, The Partition Function of ABJ Theory, PTEP 2013 (2013) 053B04 [arXiv:1212.2966] [INSPIRE].
M. Mariño and P. Putrov, Exact Results in ABJM Theory from Topological Strings, JHEP 06 (2010) 011 [arXiv:0912.3074] [INSPIRE].
M. Honda, Direct derivation of “mirror” ABJ partition function, JHEP 12 (2013) 046 [arXiv:1310.3126] [INSPIRE].
D. Gaiotto and A. Tomasiello, The gauge dual of Romans mass, JHEP 01 (2010) 015 [arXiv:0901.0969] [INSPIRE].
N. Drukker et al., Roadmap on Wilson loops in 3d Chern–Simons-matter theories, J. Phys. A 53 (2020) 173001 [arXiv:1910.00588] [INSPIRE].
N. Drukker and D. Trancanelli, A Supermatrix model for N = 6 super Chern-Simons-matter theory, JHEP 02 (2010) 058 [arXiv:0912.3006] [INSPIRE].
A. Berele and A. Regev, Hook Young-Diagrams With Applications To Combinatorics And To Representations Of Lie-Superalgebras, Adv. Math. 64 (1987) 118 [INSPIRE].
D. Martelli and J. Sparks, Moduli spaces of Chern-Simons quiver gauge theories and AdS4 /CFT3 , Phys. Rev. D 78 (2008) 126005 [arXiv:0808.0912] [INSPIRE].
Y. Imamura and K. Kimura, On the moduli space of elliptic Maxwell-Chern-Simons theories, Prog. Theor. Phys. 120 (2008) 509 [arXiv:0806.3727] [INSPIRE].
D.L. Jafferis and A. Tomasiello, A Simple class of N = 3 gauge/gravity duals, JHEP 10 (2008) 101 [arXiv:0808.0864] [INSPIRE].
F. Benini, C. Closset and S. Cremonesi, Quantum moduli space of Chern-Simons quivers, wrapped D6-branes and AdS4/CFT3, JHEP 09 (2011) 005 [arXiv:1105.2299] [INSPIRE].
T. Kitao, K. Ohta and N. Ohta, Three-dimensional gauge dynamics from brane configurations with (p,q)-fivebrane, Nucl. Phys. B 539 (1999) 79 [hep-th/9808111] [INSPIRE].
O. Bergman, A. Hanany, A. Karch and B. Kol, Branes and supersymmetry breaking in three-dimensional gauge theories, JHEP 10 (1999) 036 [hep-th/9908075] [INSPIRE].
A. Guarino, D.L. Jafferis and O. Varela, String Theory Origin of Dyonic N = 8 Supergravity and Its Chern-Simons Duals, Phys. Rev. Lett. 115 (2015) 091601 [arXiv:1504.08009] [INSPIRE].
A. Guarino, J. Tarrio and O. Varela, Romans-mass-driven flows on the D2-brane, JHEP 08 (2016) 168 [arXiv:1605.09254] [INSPIRE].
K.-M. Lee and S. Lee, 1/2-BPS Wilson Loops and Vortices in ABJM Model, JHEP 09 (2010) 004 [arXiv:1006.5589] [INSPIRE].
E. Witten, Quantum Field Theory and the Jones Polynomial, Commun. Math. Phys. 121 (1989) 351 [INSPIRE].
Y. Dolivet and M. Tierz, Chern-Simons matrix models and Stieltjes-Wigert polynomials, J. Math. Phys. 48 (2007) 023507 [hep-th/0609167] [INSPIRE].
M. Tierz, Soft matrix models and Chern-Simons partition functions, Mod. Phys. Lett. A 19 (2004) 1365 [hep-th/0212128] [INSPIRE].
A. Mironov and A. Morozov, On the complete perturbative solution of one-matrix models, Phys. Lett. B 771 (2017) 503 [arXiv:1705.00976] [INSPIRE].
A. Mironov and A. Morozov, Sum rules for characters from character-preservation property of matrix models, JHEP 08 (2018) 163 [arXiv:1807.02409] [INSPIRE].
D. García-García and M. Tierz, Matrix models for classical groups and Toeplitz±Hankel minors with applications to Chern-Simons theory and fermionic models, J. Phys. A 53 (2020) 345201 [arXiv:1901.08922] [INSPIRE].
S.G. Naculich and H.J. Schnitzer, Level-rank duality of the U(N) WZW model, Chern-Simons theory, and 2−D qYM theory, JHEP 06 (2007) 023 [hep-th/0703089] [INSPIRE].
I. G. Macdonald, Symmetric Functions and Hall Polynomials, Oxford Mathematical Monographs, Oxford University Press, Oxford, U.K. (1995).
D. Bump, Lie Groups, Graduate texts in mathematics 225 (2013).
D. Bump and A. Gamburd, On the averages of characteristic polynomials from classical groups, Commun. Math. Phys. 265 (2006) 227 [math-ph/0502043].
A. Morozov, Cauchy formula and the character ring, Eur. Phys. J. C 79 (2019) 76 [arXiv:1812.03853] [INSPIRE].
B. Jonnadula, J.P. Keating and F. Mezzadri, Symmetric function theory and unitary invariant ensembles, arXiv:2003.02620.
P. Garrett, Traces, Cauchy identity, Schur polynomials, cauchy id.pdf, (2011).
A. Kapustin and M.J. Strassler, On mirror symmetry in three-dimensional Abelian gauge theories, JHEP 04 (1999) 021 [hep-th/9902033] [INSPIRE].
M. Tierz, Exact solution of Chern-Simons-matter matrix models with characteristic/orthogonal polynomials, JHEP 04 (2016) 168 [arXiv:1601.06277] [INSPIRE].
D.L. Jafferis, The Exact Superconformal R-Symmetry Extremizes Z, JHEP 05 (2012) 159 [arXiv:1012.3210] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Contact Terms, Unitarity, and F-Maximization in Three-Dimensional Superconformal Theories, JHEP 10 (2012) 053 [arXiv:1205.4142] [INSPIRE].
C. Closset, T.T. Dumitrescu, G. Festuccia, Z. Komargodski and N. Seiberg, Comments on Chern-Simons Contact Terms in Three Dimensions, JHEP 09 (2012) 091 [arXiv:1206.5218] [INSPIRE].
E.A. Coutsias and N.D. Kazarinoff, Disorder, renormalizability, theta functions and cornu spirals, Phys. D 26 (1987) 295.
M. Berry and J. Goldberg, Renormalisation of curlicues, Nonlinearity 1 (1988) 1.
S. Benvenuti and S. Pasquetti, 3D-partition functions on the sphere: exact evaluation and mirror symmetry, JHEP 05 (2012) 099 [arXiv:1105.2551] [INSPIRE].
J.G. Russo and M. Tierz, Quantum phase transition in many-flavor supersymmetric QED3 , Phys. Rev. D 95 (2017) 031901 [arXiv:1610.08527] [INSPIRE].
S. Lee, Superconformal field theories from crystal lattices, Phys. Rev. D 75 (2007) 101901 [hep-th/0610204] [INSPIRE].
S. Kim, S. Lee, S. Lee and J. Park, Abelian Gauge Theory on M2-brane and Toric Duality, Nucl. Phys. B 797 (2008) 340 [arXiv:0705.3540] [INSPIRE].
K. Hosomichi, K.-M. Lee, S. Lee, S. Lee and J. Park, N = 4 Superconformal Chern-Simons Theories with Hyper and Twisted Hyper Multiplets, JHEP 07 (2008) 091 [arXiv:0805.3662] [INSPIRE].
D.Ž. Djoković and G. Hochschild, Semisimplicity of 2-graded Lie algebras, II, Illinois J. Math. 20 (1976) 134.
T. Kimura, Linking loops in ABJM and refined theory, JHEP 07 (2015) 030 [arXiv:1503.01462] [INSPIRE].
N. Kubo and S. Moriyama, Two-Point Functions in ABJM Matrix Model, JHEP 05 (2018) 181 [arXiv:1803.07161] [INSPIRE].
S. Gukov, A.S. Schwarz and C. Vafa, Khovanov-Rozansky homology and topological strings, Lett. Math. Phys. 74 (2005) 53 [hep-th/0412243] [INSPIRE].
S. Gukov, A. Iqbal, C. Kozcaz and C. Vafa, Link Homologies and the Refined Topological Vertex, Commun. Math. Phys. 298 (2010) 757 [arXiv:0705.1368] [INSPIRE].
N.M. Temme, Error functions, Dawson’s and Fresnel integrals, in F.W.J. Olver, D.W. Lozier, R.F. Boisvert and C.W. Clark eds., NIST Handbook of Mathematical Functions, chapter 7, Cambridge University Press, New York, NY, U.S.A. (2010).
H.-J. Chung, T. Dimofte, S. Gukov and P. Su/lkowski, 3d-3d Correspondence Revisited, JHEP 04 (2016) 140 [arXiv:1405.3663] [INSPIRE].
S. Hyun and S.-H. Yi, Non-compact Topological Branes on Conifold, JHEP 11 (2006) 075 [hep-th/0609037] [INSPIRE].
N. Drukker, D. Gaiotto and J. Gomis, The Virtue of Defects in 4D Gauge Theories and 2D CFTs, JHEP 06 (2011) 025 [arXiv:1003.1112] [INSPIRE].
B. Robinson and C.F. Uhlemann, Supersymmetric D3/D5 for massive defects on curved space, JHEP 12 (2017) 143 [arXiv:1709.08650] [INSPIRE].
Y. Hatsuda, M. Honda, S. Moriyama and K. Okuyama, ABJM Wilson Loops in Arbitrary Representations, JHEP 10 (2013) 168 [arXiv:1306.4297] [INSPIRE].
S. Hirano, K. Nii and M. Shigemori, ABJ Wilson loops and Seiberg duality, PTEP 2014 (2014) 113B04 [arXiv:1406.4141] [INSPIRE].
K. Okuyama, D-Brane Amplitudes in Topological String on Conifold, Phys. Lett. B 645 (2007) 275 [hep-th/0606048] [INSPIRE].
D. Anninos and G.A. Silva, Solvable Quantum Grassmann Matrices, J. Stat. Mech. 1704 (2017) 043102 [arXiv:1612.03795] [INSPIRE].
M. Tierz, Polynomial solution of quantum Grassmann matrices, J. Stat. Mech. 1705 (2017) 053203 [arXiv:1703.02454] [INSPIRE].
S. Gukov and M. Stošić, Homological Algebra of Knots and BPS States, Proc. Symp. Pure Math. 85 (2012) 125 [arXiv:1112.0030] [INSPIRE].
E. Gorsky, S. Gukov and M. Stosic, Quadruply-graded colored homology of knots, Fundamenta Mathematicae 243 (2018) 209 [arXiv:1304.3481] [INSPIRE].
P. Di Francesco, 2D quantum gravity, matrix models and graph combinatorics, in NATO Advanced Study Institute: Marie Curie Training Course: Applications of Random Matrices in Physics, pp. 33–88, 6, 2004, math-ph/0406013 [INSPIRE].
ALADIN 2000 collaboration, Mass and isospin dependence in multifragmentation, Acta Phys. Polon. B 37 (2006) 193 [INSPIRE].
J. Marklof, Limit theorems for theta sums, Duke Math. J. 97 (1999) 127.
S. Gukov, RG Flows and Bifurcations, Nucl. Phys. B 919 (2017) 583 [arXiv:1608.06638] [INSPIRE].
M. Bershtein, B. Feigin and G. Merzon, Plane partitions with a “pit”: generating functions and representation theory, Selecta Math. 24 (2018) 21 [arXiv:1512.08779].
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
ArXiv ePrint: 2008.00465
Rights and permissions
Open Access . This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited.
About this article
Cite this article
Santilli, L., Tierz, M. Exact results and Schur expansions in quiver Chern-Simons-matter theories. J. High Energ. Phys. 2020, 22 (2020). https://doi.org/10.1007/JHEP10(2020)022
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2020)022
Keywords
- Matrix Models
- Field Theories in Lower Dimensions
- Chern-Simons Theories
- Supersymmetric Gauge Theory