Skip to main content

Advertisement

SpringerLink
The Selfish Higgs
Download PDF
Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 18 October 2019

The Selfish Higgs

  • G.F. Giudice1,
  • A. Kehagias2 &
  • A. Riotto1,3 

Journal of High Energy Physics volume 2019, Article number: 199 (2019) Cite this article

  • 346 Accesses

  • 29 Citations

  • 24 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We propose a mechanism to solve the Higgs naturalness problem through a cosmological selection process. The discharging of excited field configurations through membrane nucleation leads to discrete jumps of the cosmological constant and the Higgs mass, which vary in a correlated way. The resulting multitude of universes are all empty, except for those in which the cosmological constant and the Higgs mass are both nearly vanishing. Only under these critical conditions can inflation be activated and create a non-empty universe.

Download to read the full article text

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

References

  1. G. Dvali and A. Vilenkin, Cosmic attractors and gauge hierarchy, Phys. Rev.D 70 (2004) 063501 [hep-th/0304043] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. G. Dvali, Large hierarchies from attractor vacua, Phys. Rev.D 74 (2006) 025018 [hep-th/0410286] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  3. P.W. Graham, D.E. Kaplan and S. Rajendran, Cosmological relaxation of the electroweak scale, Phys. Rev. Lett.115 (2015) 221801 [arXiv:1504.07551] [INSPIRE].

    Article  ADS  Google Scholar 

  4. N. Arkani-Hamed, T. Cohen, R.T. D’Agnolo, A. Hook, H.D. Kim and D. Pinner, Solving the hierarchy problem at reheating with a large number of degrees of freedom, Phys. Rev. Lett.117 (2016) 251801 [arXiv:1607.06821] [INSPIRE].

    Article  ADS  Google Scholar 

  5. A. Arvanitaki, S. Dimopoulos, V. Gorbenko, J. Huang and K. Van Tilburg, A small weak scale from a small cosmological constant, JHEP05 (2017) 071 [arXiv:1609.06320] [INSPIRE].

    Article  ADS  Google Scholar 

  6. A. Herraez and L.E. Ibáñez, An axion-induced SM/MSSM Higgs landscape and the weak gravity conjecture, JHEP02 (2017) 109 [arXiv:1610.08836] [INSPIRE].

    Article  ADS  Google Scholar 

  7. M. Geller, Y. Hochberg and E. Kuflik, Inflating to the weak scale, Phys. Rev. Lett.122 (2019) 191802 [arXiv:1809.07338] [INSPIRE].

    Article  ADS  Google Scholar 

  8. C. Cheung and P. Saraswat, Mass hierarchy and vacuum energy, arXiv:1811.12390 [INSPIRE].

  9. R. Dawkins, The Selfish gene, Oxford University Press, Oxford, U.K. (1976).

    Google Scholar 

  10. A. Aurilia, H. Nicolai and P.K. Townsend, Hidden constants: the θ parameter of QCD and the cosmological constant of N = 8 supergravity, Nucl. Phys.B 176 (1980) 509 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  11. E. Witten, Fermion quantum numbers in Kaluza-Klein theory, in Proceedings of the 1983 Shelter Island Conference on Quantum Field Theory and the Fundamental Problems of Physics, Conf. Proc.C 8306011 (1983) 227 [INSPIRE].

    Google Scholar 

  12. M. Henneaux and C. Teitelboim, The cosmological constant as a canonical variable, Phys. Lett.B 143 (1984) 415 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  13. J.D. Brown and C. Teitelboim, Dynamical neutralization of the cosmological constant, Phys. Lett.B 195 (1987) 177 [INSPIRE].

    Article  ADS  Google Scholar 

  14. J.D. Brown and C. Teitelboim, Neutralization of the cosmological constant by membrane creation, Nucl. Phys.B 297 (1988) 787 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  15. M.J. Duff, The cosmological constant is possibly zero, but the proof is probably wrong, Phys. Lett.B 226 (1989) 36 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  16. R. Bousso and J. Polchinski, Quantization of four form fluxes and dynamical neutralization of the cosmological constant, JHEP06 (2000) 006 [hep-th/0004134] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  17. J.L. Feng, J. March-Russell, S. Sethi and F. Wilczek, Saltatory relaxation of the cosmological constant, Nucl. Phys.B 602 (2001) 307 [hep-th/0005276] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  18. G.R. Dvali and A. Vilenkin, Field theory models for variable cosmological constant, Phys. Rev.D 64 (2001) 063509 [hep-th/0102142] [INSPIRE].

    ADS  Google Scholar 

  19. F. Farakos, A. Kehagias, D. Racco and A. Riotto, Scanning of the supersymmetry breaking scale and the gravitino mass in supergravity, JHEP06 (2016) 120 [arXiv:1605.07631] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  20. N. Kaloper and L. Sorbo, A natural framework for chaotic inflation, Phys. Rev. Lett.102 (2009) 121301 [arXiv:0811.1989] [INSPIRE].

    Article  ADS  Google Scholar 

  21. N. Kaloper, A. Lawrence and L. Sorbo, An ignoble approach to large field inflation, JCAP03 (2011) 023 [arXiv:1101.0026] [INSPIRE].

    Article  ADS  Google Scholar 

  22. N. Kaloper and A. Lawrence, Natural chaotic inflation and ultraviolet sensitivity, Phys. Rev.D 90 (2014) 023506 [arXiv:1404.2912] [INSPIRE].

    ADS  Google Scholar 

  23. E. Dudas, Three-form multiplet and inflation, JHEP12 (2014) 014 [arXiv:1407.5688] [INSPIRE].

    Article  ADS  Google Scholar 

  24. G. Dvali, Three-form gauging of axion symmetries and gravity, hep-th/0507215 [INSPIRE].

  25. G. Dvali, A vacuum accumulation solution to the strong CP problem, Phys. Rev.D 74 (2006) 025019 [hep-th/0510053] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  26. S. Weinberg, Anthropic bound on the cosmological constant, Phys. Rev. Lett.59 (1987) 2607 [INSPIRE].

    Article  ADS  Google Scholar 

  27. M.J. Duncan and L.G. Jensen, Four forms and the vanishing of the cosmological constant, Nucl. Phys.B 336 (1990) 100 [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  28. G.W. Gibbons and S.W. Hawking, Action integrals and partition functions in quantum gravity, Phys. Rev.D 15 (1977) 2752 [INSPIRE].

    ADS  Google Scholar 

  29. S. de Alwis, R. Gupta, E. Hatefi and F. Quevedo, Stability, tunneling and flux changing de Sitter transitions in the large volume string scenario, JHEP11 (2013) 179 [arXiv:1308.1222] [INSPIRE].

    Article  ADS  Google Scholar 

  30. G. Degrassi et al., Higgs mass and vacuum stability in the Standard Model at NNLO, JHEP08 (2012) 098 [arXiv:1205.6497] [INSPIRE].

    Article  ADS  Google Scholar 

  31. D. Buttazzo et al., Investigating the near-criticality of the Higgs boson, JHEP12 (2013) 089 [arXiv:1307.3536] [INSPIRE].

    Article  ADS  Google Scholar 

  32. X. Chen, Y. Wang and Z.-Z. Xianyu, Standard Model mass spectrum in inflationary universe, JHEP04 (2017) 058 [arXiv:1612.08122] [INSPIRE].

    Article  ADS  MathSciNet  Google Scholar 

  33. L.E. Parker and D. Toms, Quantum field theory in curved spacetime: quantized field and gravity, Cambridge University Press, Cambridge, U.K. (2009).

    Book  Google Scholar 

  34. M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Spacetime curvature and Higgs stability after inflation, Phys. Rev. Lett.115 (2015) 241301 [arXiv:1506.04065] [INSPIRE].

    Article  ADS  Google Scholar 

  35. A.H. Guth and E.J. Weinberg, Could the universe have recovered from a slow first order phase transition?, Nucl. Phys.B 212 (1983) 321 [INSPIRE].

    Article  ADS  Google Scholar 

  36. A.D. Linde, Relaxing the cosmological moduli problem, Phys. Rev.D 53 (1996) R4129 [hep-th/9601083] [INSPIRE].

    ADS  Google Scholar 

  37. M. Dine, L. Randall and S.D. Thomas, Supersymmetry breaking in the early universe, Phys. Rev. Lett.75 (1995) 398 [hep-ph/9503303] [INSPIRE].

  38. L. Knox and M.S. Turner, Inflation at the electroweak scale, Phys. Rev. Lett.70 (1993) 371 [astro-ph/9209006] [INSPIRE].

  39. K. Enqvist and M.S. Sloth, Adiabatic CMB perturbations in pre-big bang string cosmology, Nucl. Phys.B 626 (2002) 395 [hep-ph/0109214] [INSPIRE].

  40. D.H. Lyth and D. Wands, Generating the curvature perturbation without an inflaton, Phys. Lett.B 524 (2002) 5 [hep-ph/0110002] [INSPIRE].

  41. T. Moroi and T. Takahashi, Effects of cosmological moduli fields on cosmic microwave background, Phys. Lett.B 522 (2001) 215 [Erratum ibid.B 539 (2002) 303] [hep-ph/0110096] [INSPIRE].

  42. J.R. Espinosa, C. Grojean, G. Panico, A. Pomarol, O. Pujolàs and G. Servant, Cosmological Higgs-axion interplay for a naturally small electroweak scale, Phys. Rev. Lett.115 (2015) 251803 [arXiv:1506.09217] [INSPIRE].

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. CERN, Theoretical Physics Department, Geneva, Switzerland

    G.F. Giudice & A. Riotto

  2. Physics Division, National Technical University of Athens, 15780 Zografou Campus, Athens, Greece

    A. Kehagias

  3. Department of Theoretical Physics and Center for Astroparticle Physics (CAP), 24 quai E. Ansermet, CH-1211, Geneva 4, Switzerland

    A. Riotto

Authors
  1. G.F. Giudice
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. A. Kehagias
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. A. Riotto
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to A. Kehagias.

Additional information

ArXiv ePrint: 1907.05370

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Giudice, G., Kehagias, A. & Riotto, A. The Selfish Higgs. J. High Energ. Phys. 2019, 199 (2019). https://doi.org/10.1007/JHEP10(2019)199

Download citation

  • Received: 12 July 2019

  • Revised: 28 September 2019

  • Accepted: 04 October 2019

  • Published: 18 October 2019

  • DOI: https://doi.org/10.1007/JHEP10(2019)199

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Cosmology of Theories beyond the SM
  • Effective Field Theories
  • Higgs Physics
Download PDF

Working on a manuscript?

Avoid the most common mistakes and prepare your manuscript for journal editors.

Learn more

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.