Massive higher spins: effective theory and consistency

Abstract

We construct the effective field theory for a single massive higher-spin particle in flat spacetime. Positivity bounds of the S-matrix force the cutoff of the theory to be well below the naive strong-coupling scale, forbid any potential and make therefore higher- derivative operators important even at low energy. As interesting application, we discuss in detail the massive spin-3 theory and show that an extended Galileon-like symmetry of the longitudinal modes, even with spin, emerges at high energy.

A preprint version of the article is available at ArXiv.

References

  1. [1]

    A. Kehagias and A. Riotto, On the inflationary perturbations of massive higher-spin fields, JCAP07 (2017) 046 [arXiv:1705.05834] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  2. [2]

    G. Franciolini, A. Kehagias, A. Riotto and M. Shiraishi, Detecting higher spin fields through statistical anisotropy in the CMB bispectrum, Phys. Rev.D 98 (2018) 043533 [arXiv:1803.03814] [INSPIRE].

    ADS  Google Scholar 

  3. [3]

    L. Bordin, P. Creminelli, A. Khmelnitsky and L. Senatore, Light particles with spin in inflation, JCAP10 (2018) 013 [arXiv:1806.10587] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  4. [4]

    N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, arXiv:1811.00024 [INSPIRE].

  5. [5]

    J.M. Cornwall, D.N. Levin and G. Tiktopoulos, Derivation of gauge invariance from high-energy unitarity bounds on the S matrix, Phys. Rev.D 10 (1974) 1145 [Erratum ibid.D 11 (1975) 972] [INSPIRE].

  6. [6]

    N. Arkani-Hamed, H. Georgi and M.D. Schwartz, Effective field theory for massive gravitons and gravity in theory space, Annals Phys.305 (2003) 96 [hep-th/0210184] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  7. [7]

    X. Bekaert, N. Boulanger and P. Sundell, How higher-spin gravity surpasses the spin two barrier: no-go theorems versus yes-go examples, Rev. Mod. Phys.84 (2012) 987 [arXiv:1007.0435] [INSPIRE].

    ADS  Article  Google Scholar 

  8. [8]

    R. Rahman, Higher spin theory — part I, PoS(ModaveVIII)004 (2012) [arXiv:1307.3199] [INSPIRE].

  9. [9]

    S.R. Coleman and J. Mandula, All possible symmetries of the S matrix, Phys. Rev.159 (1967) 1251 [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  10. [10]

    S. Weinberg, Photons and gravitons in S matrix theory: derivation of charge conservation and equality of gravitational and inertial mass, Phys. Rev.135 (1964) B1049 [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  11. [11]

    M. Porrati and R. Rahman, A model independent ultraviolet cutoff for theories with charged massive higher spin fields, Nucl. Phys.B 814 (2009) 370 [arXiv:0812.4254] [INSPIRE].

    ADS  MATH  Article  Google Scholar 

  12. [12]

    J. Bonifacio and K. Hinterbichler, Universal bound on the strong coupling scale of a gravitationally coupled massive spin-2 particle, Phys. Rev.D 98 (2018) 085006 [arXiv:1806.10607] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. [13]

    S. Caron-Huot, Z. Komargodski, A. Sever and A. Zhiboedov, Strings from massive higher spins: the asymptotic uniqueness of the Veneziano amplitude, JHEP10 (2017) 026 [arXiv:1607.04253] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  14. [14]

    X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv:1407.5597] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  15. [15]

    N. Afkhami-Jeddi, S. Kundu and A. Tajdini, A bound on massive higher spin particles, JHEP04 (2019) 056 [arXiv:1811.01952] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  16. [16]

    A. Adams, N. Arkani-Hamed, S. Dubovsky, A. Nicolis and R. Rattazzi, Causality, analyticity and an IR obstruction to UV completion, JHEP10 (2006) 014 [hep-th/0602178] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  17. [17]

    B. Bellazzini, Softness and amplitudes’ positivity for spinning particles, JHEP02 (2017) 034 [arXiv:1605.06111] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  18. [18]

    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, Beyond positivity bounds and the fate of massive gravity, Phys. Rev. Lett.120 (2018) 161101 [arXiv:1710.02539] [INSPIRE].

    ADS  Article  Google Scholar 

  19. [19]

    C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011.1232] [INSPIRE].

    ADS  Article  Google Scholar 

  20. [20]

    C. Fronsdal, Massless fields with integer spin, Phys. Rev.D 18 (1978) 3624 [INSPIRE].

    ADS  Google Scholar 

  21. [21]

    B. de Wit and D.Z. Freedman, Systematics of higher spin gauge fields, Phys. Rev.D 21 (1980) 358 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  22. [22]

    H. Elvang and Y.-T. Huang, Scattering amplitudes, arXiv:1308.1697 [INSPIRE].

  23. [23]

    K. Hinterbichler, A. Joyce and R.A. Rosen, Eikonal scattering and asymptotic superluminality of massless higher spin fields, Phys. Rev.D 97 (2018) 125019 [arXiv:1712.10021] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  24. [24]

    M. Porrati, Old and new no go theorems on interacting massless particles in flat space, in Proceedings, 17thInternational Seminar on High Energy Physics (Quarks 2012), Yaroslavl, Russia, 4–7 June 2012 [arXiv:1209.4876] [INSPIRE].

  25. [25]

    M. Bianchi, P.J. Heslop and F. Riccioni, More on “La Grande Bouffe”, JHEP08 (2005) 088 [hep-th/0504156] [INSPIRE].

    ADS  Article  Google Scholar 

  26. [26]

    L.P.S. Singh and C.R. Hagen, Lagrangian formulation for arbitrary spin. 1. The boson case, Phys. Rev.D 9 (1974) 898 [INSPIRE].

  27. [27]

    R.R. Metsaev, Cubic interaction vertices of massive and massless higher spin fields, Nucl. Phys.B 759 (2006) 147 [hep-th/0512342] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  28. [28]

    B. Bellazzini, J. Serra, F. Sgarlata and F. Riva, Galileons and effective theory, to appear.

  29. [29]

    K. Hinterbichler and A. Joyce, Goldstones with extended shift symmetries, Int. J. Mod. Phys.D 23 (2014) 1443001 [arXiv:1404.4047] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  30. [30]

    M. Froissart, Asymptotic behavior and subtractions in the Mandelstam representation, Phys. Rev.123 (1961) 1053 [INSPIRE].

    ADS  Article  Google Scholar 

  31. [31]

    A. Martin, Extension of the axiomatic analyticity domain of scattering amplitudes by unitarity. 1, Nuovo Cim.A 42 (1965) 930 [INSPIRE].

  32. [32]

    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, UV complete me: positivity bounds for particles with spin, JHEP03 (2018) 011 [arXiv:1706.02712] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  33. [33]

    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Positivity bounds for massive spin-1 and spin-2 fields, JHEP03 (2019) 182 [arXiv:1804.10624] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  34. [34]

    J. Bonifacio and K. Hinterbichler, Bounds on amplitudes in effective theories with massive spinning particles, Phys. Rev.D 98 (2018) 045003 [arXiv:1804.08686] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. [35]

    J.J. Bonifacio, Aspects of massive spin-2 effective field theories, Ph.D. thesis, Oxford U., Oxford, U.K. (2017) [INSPIRE].

  36. [36]

    T. Griffin, K.T. Grosvenor, P. Hǒrava and Z. Yan, Scalar field theories with polynomial shift symmetries, Commun. Math. Phys.340 (2015) 985 [arXiv:1412.1046] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  37. [37]

    M.A. Luty, M. Porrati and R. Rattazzi, Strong interactions and stability in the DGP model, JHEP09 (2003) 029 [hep-th/0303116] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  38. [38]

    G. Goon, K. Hinterbichler, A. Joyce and M. Trodden, Aspects of Galileon non-renormalization, JHEP11 (2016) 100 [arXiv:1606.02295] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

  39. [39]

    A. Nicolis, R. Rattazzi and E. Trincherini, Energy’s and amplitudes’ positivity, JHEP05 (2010) 095 [Erratum ibid.11 (2011) 128] [arXiv:0912.4258] [INSPIRE].

  40. [40]

    C. Cheung and G.N. Remmen, Positive signs in massive gravity, JHEP04 (2016) 002 [arXiv:1601.04068] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  41. [41]

    J. Distler, B. Grinstein, R.A. Porto and I.Z. Rothstein, Falsifying models of new physics via W W scattering, Phys. Rev. Lett.98 (2007) 041601 [hep-ph/0604255] [INSPIRE].

  42. [42]

    C. de Rham, S. Melville, A.J. Tolley and S.-Y. Zhou, Massive Galileon positivity bounds, JHEP09 (2017) 072 [arXiv:1702.08577] [INSPIRE].

    MathSciNet  MATH  Article  Google Scholar 

  43. [43]

    B. Bellazzini, J. Elias-Miro, R. Rattazzi, M. Riembau and F. Riva, Positivity bounds and super-soft amplitudes, to appear.

  44. [44]

    C. Englert, G.F. Giudice, A. Greljo and M. Mccullough, The Ĥ -parameter: an oblique Higgs view, JHEP09 (2019) 041 [arXiv:1903.07725] [INSPIRE].

    ADS  MathSciNet  Article  Google Scholar 

  45. [45]

    J. Bonifacio, K. Hinterbichler and R.A. Rosen, Positivity constraints for pseudolinear massive spin-2 and vector Galileons, Phys. Rev.D 94 (2016) 104001 [arXiv:1607.06084] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  46. [46]

    D. Liu, A. Pomarol, R. Rattazzi and F. Riva, Patterns of strong coupling for LHC searches, JHEP11 (2016) 141 [arXiv:1603.03064] [INSPIRE].

    ADS  Article  Google Scholar 

  47. [47]

    B. Bellazzini, F. Riva, J. Serra and F. Sgarlata, The other effective fermion compositeness, JHEP11 (2017) 020 [arXiv:1706.03070] [INSPIRE].

    ADS  Article  Google Scholar 

  48. [48]

    B. Bellazzini and F. Riva, New phenomenological and theoretical perspective on anomalous Z Z and Z γ processes, Phys. Rev.D 98 (2018) 095021 [arXiv:1806.09640] [INSPIRE].

    ADS  Google Scholar 

  49. [49]

    S. Bruggisser, F. Riva and A. Urbano, Strongly interacting light dark matter, SciPost Phys.3 (2017) 017 [arXiv:1607.02474] [INSPIRE].

    ADS  Article  Google Scholar 

  50. [50]

    S. Bruggisser, F. Riva and A. Urbano, The last gasp of dark matter effective theory, JHEP11 (2016) 069 [arXiv:1607.02475] [INSPIRE].

    ADS  Article  Google Scholar 

  51. [51]

    B. Bellazzini, M. Lewandowski and J. Serra, Amplitudes’ positivity, weak gravity conjecture and modified gravity, arXiv:1902.03250 [INSPIRE].

  52. [52]

    \D. Anselmi, Theory of higher spin tensor currents and central charges, Nucl. Phys.B 541 (1999) 323 [hep-th/9808004] [INSPIRE].

    ADS  MathSciNet  MATH  Article  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francesco Sgarlata.

Additional information

ArXiv ePrint: 1903.08664

Rights and permissions

This article is published under an open access license. Please check the 'Copyright Information' section either on this page or in the PDF for details of this license and what re-use is permitted. If your intended use exceeds what is permitted by the license or if you are unable to locate the licence and re-use information, please contact the Rights and Permissions team.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bellazzini, B., Riva, F., Serra, J. et al. Massive higher spins: effective theory and consistency. J. High Energ. Phys. 2019, 189 (2019). https://doi.org/10.1007/JHEP10(2019)189

Download citation

Keywords

  • Effective Field Theories
  • Scattering Amplitudes