Skip to main content
Springer Nature Link
Account
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of High Energy Physics
  3. Article

Anomaly free Froggatt-Nielsen models of flavor

  • Regular Article - Theoretical Physics
  • Open access
  • Published: 17 October 2019
  • Volume 2019, article number 188, (2019)
  • Cite this article
Download PDF

You have full access to this open access article

Journal of High Energy Physics Aims and scope Submit manuscript
Anomaly free Froggatt-Nielsen models of flavor
Download PDF
  • Aleks Smolkovič  ORCID: orcid.org/0000-0003-0798-95121,
  • Michele Tammaro2 &
  • Jure Zupan2 

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

An Erratum to this article was published on 04 February 2022

This article has been updated

A preprint version of the article is available at arXiv.

Abstract

We introduce two anomaly free versions of Froggatt-Nielsen (FN) models, based on either GFN = U(1)3 or GFN = U(1) horizontal symmetries, that generate the SM quark and lepton flavor structures. The structure of these “inverted” FN models is motivated by the clockwork mechanism: the chiral fields, singlets under GFN, are supplemented by chains of vector-like fermions charged under GFN. Unlike the traditional FN models the hierarchy of quark and lepton masses is obtained as an expansion in M/〈ϕ〉, where M is the typical vector-like fermion mass, and 〈ϕ〉 the flavon vacuum expectation value. The models can be searched for through deviations in flavor observables such as \( K-\overline{K} \) mixing, μ → e conversion, etc., where the present bounds restrict the masses of vector-like fermions to be above \( \mathcal{O} \)(107 GeV). If GFN is gauged, the models can also be probed by searching for the flavorful Z′ gauge bosons. In principle, the Z′s can be very light, and can be searched for using precision flavor, astrophysics, and beam dump experiments.

Article PDF

Download to read the full article text

Similar content being viewed by others

Deconstructing flavor anomalously

Article Open access 12 July 2024

One colorful resolution to the neutrino mass generation, three lepton flavor universality anomalies, and the Cabibbo angle anomaly

Article Open access 08 September 2021

Flavor-dependent U(1) extension inspired by lepton, baryon and color numbers

Article Open access 17 November 2023
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Change history

  • 04 February 2022

    An Erratum to this paper has been published: https://doi.org/10.1007/JHEP02(2022)033

References

  1. Particle Data Group collaboration, Review of Particle Physics, Phys. Rev. D 98 (2018) 030001 [INSPIRE].

  2. C.D. Froggatt and H.B. Nielsen, Hierarchy of Quark Masses, Cabibbo Angles and CP-violation, Nucl. Phys. B 147 (1979) 277 [INSPIRE].

    ADS  Google Scholar 

  3. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models, Nucl. Phys. B 398 (1993) 319 [hep-ph/9212278] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  4. M. Leurer, Y. Nir and N. Seiberg, Mass matrix models: The sequel, Nucl. Phys. B 420 (1994) 468 [hep-ph/9310320] [INSPIRE].

    ADS  Google Scholar 

  5. C.D. Froggatt, M. Gibson and H.B. Nielsen, Neutrino masses and mixings from an anomaly free SMG × U(1)2 model, Phys. Lett. B 446 (1999) 256 [hep-ph/9811265] [INSPIRE].

    ADS  Google Scholar 

  6. B.C. Allanach, J. Davighi and S. Melville, An anomaly-free ATLAS: charting the space of flavour-dependent gauged U(1) extensions of the Standard Model, JHEP 02 (2019) 082 [Erratum ibid. 08 (2019) 064] [arXiv:1812.04602] [INSPIRE].

  7. D.B. Costa, B.A. Dobrescu and P.J. Fox, General Solution to the U(1) Anomaly Equations, Phys. Rev. Lett. 123 (2019) 151601 [arXiv:1905.13729] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  8. J. Ellis, M. Fairbairn and P. Tunney, Anomaly-Free Models for Flavour Anomalies, Eur. Phys. J. C 78 (2018) 238 [arXiv:1705.03447] [INSPIRE].

    ADS  Google Scholar 

  9. L. Delle Rose, S. Khalil and S. Moretti, Explanation of the 17 MeV Atomki anomaly in a U(1)’-extended two Higgs doublet model, Phys. Rev. D 96 (2017) 115024 [arXiv:1704.03436] [INSPIRE].

    ADS  Google Scholar 

  10. F.C. Correia and S. Fajfer, Light Mediators in Anomaly Free U(1)X Models II — Constraints on Dark Gauge Bosons, arXiv:1905.03872 [INSPIRE].

  11. F.C. Correia and S. Fajfer, Light Mediators in Anomaly Free U(1)X Models I — Theoretical Framework, arXiv:1905.03867 [INSPIRE].

  12. M.S. Berger and K. Siyeon, Anomaly free flavor symmetry and neutrino anarchy, Phys. Rev. D 63 (2001) 057302 [hep-ph/0010245] [INSPIRE].

    ADS  Google Scholar 

  13. M.-C. Chen, A. de Gouvêa and B.A. Dobrescu, Gauge Trimming of Neutrino Masses, Phys. Rev. D 75 (2007) 055009 [hep-ph/0612017] [INSPIRE].

    ADS  Google Scholar 

  14. J. Rathsman and F. Tellander, Anomaly-free Model Building with Algebraic Geometry, Phys. Rev. D 100 (2019) 055032 [arXiv:1902.08529] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. L.E. Ibáñez and G.G. Ross, Fermion masses and mixing angles from gauge symmetries, Phys. Lett. B 332 (1994) 100 [hep-ph/9403338] [INSPIRE].

    ADS  Google Scholar 

  16. P. Binetruy and P. Ramond, Yukawa textures and anomalies, Phys. Lett. B 350 (1995) 49 [hep-ph/9412385] [INSPIRE].

    ADS  Google Scholar 

  17. V. Jain and R. Shrock, Models of fermion mass matrices based on a flavor dependent and generation dependent U(1) gauge symmetry, Phys. Lett. B 352 (1995) 83 [hep-ph/9412367] [INSPIRE].

    ADS  Google Scholar 

  18. E. Dudas, S. Pokorski and C.A. Savoy, Yukawa matrices from a spontaneously broken Abelian symmetry, Phys. Lett. B 356 (1995) 45 [hep-ph/9504292] [INSPIRE].

    ADS  Google Scholar 

  19. E. Dudas, C. Grojean, S. Pokorski and C.A. Savoy, Abelian flavor symmetries in supersymmetric models, Nucl. Phys. B 481 (1996) 85 [hep-ph/9606383] [INSPIRE].

    ADS  Google Scholar 

  20. P. Binetruy, S. Lavignac and P. Ramond, Yukawa textures with an anomalous horizontal Abelian symmetry, Nucl. Phys. B 477 (1996) 353 [hep-ph/9601243] [INSPIRE].

    ADS  Google Scholar 

  21. N. Irges, S. Lavignac and P. Ramond, Predictions from an anomalous U(1) model of Yukawa hierarchies, Phys. Rev. D 58 (1998) 035003 [hep-ph/9802334] [INSPIRE].

    ADS  Google Scholar 

  22. S.F. King, Large mixing angle MSW and atmospheric neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 576 (2000) 85 [hep-ph/9912492] [INSPIRE].

    ADS  Google Scholar 

  23. S.F. King, Atmospheric and solar neutrinos from single right-handed neutrino dominance and U(1) family symmetry, Nucl. Phys. B 562 (1999) 57 [hep-ph/9904210] [INSPIRE].

    ADS  Google Scholar 

  24. Q. Shafi and Z. Tavartkiladze, Anomalous flavor U(1): Predictive texture for bimaximal neutrino mixing, Phys. Lett. B 482 (2000) 145 [hep-ph/0002150] [INSPIRE].

    ADS  Google Scholar 

  25. H.K. Dreiner, H. Murayama and M. Thormeier, Anomalous flavor U(1)X for everything, Nucl. Phys. B 729 (2005) 278 [hep-ph/0312012] [INSPIRE].

    ADS  Google Scholar 

  26. H.K. Dreiner, C. Luhn, H. Murayama and M. Thormeier, Proton Hexality from an Anomalous Flavor U(1) and Neutrino Masses: Linking to the String Scale, Nucl. Phys. B 795 (2008) 172 [arXiv:0708.0989] [INSPIRE].

    ADS  MATH  Google Scholar 

  27. R. Alonso, A. Carmona, B.M. Dillon, J.F. Kamenik, J. Martin Camalich and J. Zupan, A clockwork solution to the flavor puzzle, JHEP 10 (2018) 099 [arXiv:1807.09792] [INSPIRE].

    ADS  Google Scholar 

  28. G.F. Giudice and M. McCullough, A Clockwork Theory, JHEP 02 (2017) 036 [arXiv:1610.07962] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. K.S. Babu, Renormalization Group Analysis of the Kobayashi-Maskawa Matrix, Z. Phys. C 35 (1987) 69 [INSPIRE].

    ADS  Google Scholar 

  30. G. von Gersdorff, Natural Fermion Hierarchies from Random Yukawa Couplings, JHEP 09 (2017) 094 [arXiv:1705.05430] [INSPIRE].

    Google Scholar 

  31. L. Calibbi, D. Redigolo, R. Ziegler and J. Zupan, Lepton-flavor-violating decays into axion-like particles, to appear.

  32. S. Vagnozzi et al., Unveiling ν secrets with cosmological data: neutrino masses and mass hierarchy, Phys. Rev. D 96 (2017) 123503 [arXiv:1701.08172] [INSPIRE].

    ADS  Google Scholar 

  33. I. Esteban, M.C. Gonzalez-Garcia, A. Hernandez-Cabezudo, M. Maltoni and T. Schwetz, Global analysis of three-flavour neutrino oscillations: synergies and tensions in the determination of θ23, δCP and the mass ordering, JHEP 01 (2019) 106 [arXiv:1811.05487] [INSPIRE].

    ADS  Google Scholar 

  34. Y. Kahn, G. Krnjaic, S. Mishra-Sharma and T.M.P. Tait, Light Weakly Coupled Axial Forces: Models, Constraints and Projections, JHEP 05 (2017) 002 [arXiv:1609.09072] [INSPIRE].

    ADS  MATH  Google Scholar 

  35. J. Kozaczuk, D.E. Morrissey and S.R. Stroberg, Light axial vector bosons, nuclear transitions and the 8 Be anomaly, Phys. Rev. D 95 (2017) 115024 [arXiv:1612.01525] [INSPIRE].

    ADS  Google Scholar 

  36. P. Ilten, Y. Soreq, M. Williams and W. Xue, Serendipity in dark photon searches, JHEP 06 (2018) 004 [arXiv:1801.04847] [INSPIRE].

    ADS  Google Scholar 

  37. BaBar collaboration, Search for a Dark Photon in e+e− Collisions at BaBar, Phys. Rev. Lett. 113 (2014) 201801 [arXiv:1406.2980] [INSPIRE].

  38. BaBar collaboration, Search for Invisible Decays of a Dark Photon Produced in e+e− Collisions at BaBar, Phys. Rev. Lett. 119 (2017) 131804 [arXiv:1702.03327] [INSPIRE].

  39. A. Anastasi et al., Limit on the production of a low-mass vector boson in e+e− → Uγ, U → e+e− with the KLOE experiment, Phys. Lett. B 750 (2015) 633 [arXiv:1509.00740] [INSPIRE].

    ADS  Google Scholar 

  40. DELPHI collaboration, Photon events with missing energy in e+e− collisions at \( \sqrt{s} \)= 130 GeV to 209 GeV, Eur. Phys. J. C 38 (2005) 395 [hep-ex/0406019] [INSPIRE].

  41. DELPHI collaboration, Search for one large extra dimension with the DELPHI detector at LEP, Eur. Phys. J. C 60 (2009) 17 [arXiv:0901.4486] [INSPIRE].

  42. J.D. Bjorken, R. Essig, P. Schuster and N. Toro, New Fixed-Target Experiments to Search for Dark Gauge Forces, Phys. Rev. D 80 (2009) 075018 [arXiv:0906.0580] [INSPIRE].

    ADS  Google Scholar 

  43. S. Andreas, C. Niebuhr and A. Ringwald, New Limits on Hidden Photons from Past Electron Beam Dumps, Phys. Rev. D 86 (2012) 095019 [arXiv:1209.6083] [INSPIRE].

    ADS  Google Scholar 

  44. J. Blümlein and J. Brunner, New Exclusion Limits on Dark Gauge Forces from Proton Bremsstrahlung in Beam-Dump Data, Phys. Lett. B 731 (2014) 320 [arXiv:1311.3870] [INSPIRE].

    ADS  Google Scholar 

  45. H. Merkel et al., Search at the Mainz Microtron for Light Massive Gauge Bosons Relevant for the Muon g-2 Anomaly, Phys. Rev. Lett. 112 (2014) 221802 [arXiv:1404.5502] [INSPIRE].

    ADS  Google Scholar 

  46. APEX collaboration, Search for a New Gauge Boson in Electron-Nucleus Fixed-Target Scattering by the APEX Experiment, Phys. Rev. Lett. 107 (2011) 191804 [arXiv:1108.2750] [INSPIRE].

  47. J.D. Bjorken et al., Search for Neutral Metastable Penetrating Particles Produced in the SLAC Beam Dump, Phys. Rev. D 38 (1988) 3375 [INSPIRE].

    ADS  Google Scholar 

  48. E.M. Riordan et al., A Search for Short Lived Axions in an Electron Beam Dump Experiment, Phys. Rev. Lett. 59 (1987) 755 [INSPIRE].

    ADS  Google Scholar 

  49. A. Bross, M. Crisler, S.H. Pordes, J. Volk, S. Errede and J. Wrbanek, A Search for Shortlived Particles Produced in an Electron Beam Dump, Phys. Rev. Lett. 67 (1991) 2942 [INSPIRE].

    ADS  Google Scholar 

  50. M. Davier and H. Nguyen Ngoc, An Unambiguous Search for a Light Higgs Boson, Phys. Lett. B 229 (1989) 150 [INSPIRE].

    ADS  Google Scholar 

  51. A. Konaka et al., Search for Neutral Particles in Electron Beam Dump Experiment, Phys. Rev. Lett. 57 (1986) 659 [INSPIRE].

    ADS  Google Scholar 

  52. NA64 collaboration, Search for a Hypothetical 16.7 MeV Gauge Boson and Dark Photons in the NA64 Experiment at CERN, Phys. Rev. Lett. 120 (2018) 231802 [arXiv:1803.07748] [INSPIRE].

  53. J. Blümlein et al., Limits on the mass of light (pseudo)scalar particles from Bethe-Heitler e+e− and μ+μ− pair production in a proton-iron beam dump experiment, Int. J. Mod. Phys. A 7 (1992) 3835 [INSPIRE].

    ADS  Google Scholar 

  54. LHCb collaboration, Search for Dark Photons Produced in 13 TeV pp Collisions, Phys. Rev. Lett. 120 (2018) 061801 [arXiv:1710.02867] [INSPIRE].

  55. NA60 collaboration, Precision study of the η → μ+μ−γ and ω → μ+μ−π0 electromagnetic transition form-factors and of the ρ → μ+μ− line shape in NA60, Phys. Lett. B 757 (2016) 437 [arXiv:1608.07898] [INSPIRE].

  56. CHARM collaboration, Search for Axion Like Particle Production in 400-GeV Proton-Copper Interactions, Phys. Lett. 157B (1985) 458 [INSPIRE].

  57. J. Blümlein et al., Limits on neutral light scalar and pseudoscalar particles in a proton beam dump experiment, Z. Phys. C 51 (1991) 341 [INSPIRE].

    Google Scholar 

  58. KLOE-2 collaboration, Search for a vector gauge boson in ϕ meson decays with the KLOE detector, Phys. Lett. B 706 (2012) 251 [arXiv:1110.0411] [INSPIRE].

  59. C.S. Wood et al., Measurement of parity nonconservation and an anapole moment in cesium, Science 275 (1997) 1759 [INSPIRE].

    Google Scholar 

  60. V.A. Dzuba, V.V. Flambaum and Y.V. Stadnik, Probing low-mass vector bosons with parity nonconservation and nuclear anapole moment measurements in atoms and molecules, Phys. Rev. Lett. 119 (2017) 223201 [arXiv:1709.10009] [INSPIRE].

    ADS  Google Scholar 

  61. J.H. Chang, R. Essig and S.D. McDermott, Revisiting Supernova 1987A Constraints on Dark Photons, JHEP 01 (2017) 107 [arXiv:1611.03864] [INSPIRE].

    ADS  MATH  Google Scholar 

  62. W. Altmannshofer, S. Gori, M. Pospelov and I. Yavin, Neutrino Trident Production: A Powerful Probe of New Physics with Neutrino Beams, Phys. Rev. Lett. 113 (2014) 091801 [arXiv:1406.2332] [INSPIRE].

    ADS  Google Scholar 

  63. W. Altmannshofer, S. Gori, J. Martín-Albo, A. Sousa and M. Wallbank, Neutrino Tridents at DUNE, arXiv:1902.06765 [INSPIRE].

  64. P. Ballett, M. Hostert, S. Pascoli, Y.F. Perez-Gonzalez, Z. Tabrizi and R. Zukanovich Funchal, Z′s in neutrino scattering at DUNE, Phys. Rev. D 100 (2019) 055012 [arXiv:1902.08579] [INSPIRE].

    ADS  Google Scholar 

  65. CCFR collaboration, Neutrino tridents and W-Z interference, Phys. Rev. Lett. 66 (1991) 3117 [INSPIRE].

  66. CHARM-II collaboration, Precision measurement of electroweak parameters from the scattering of muon-neutrinos on electrons, Phys. Lett. B 335 (1994) 246 [INSPIRE].

  67. TEXONO collaboration, Measurement of \( {\overline{\nu}}_e \)-electron scattering cross-section with a CsI(Tl) scintillating crystal array at the Kuo-Sheng nuclear power reactor, Phys. Rev. D 81 (2010) 072001 [arXiv:0911.1597] [INSPIRE].

  68. M. Lindner, F.S. Queiroz, W. Rodejohann and X.-J. Xu, Neutrino-electron scattering: general constraints on Z′ and dark photon models, JHEP 05 (2018) 098 [arXiv:1803.00060] [INSPIRE].

    ADS  Google Scholar 

  69. SLAC E158 collaboration, Precision measurement of the weak mixing angle in Møller scattering, Phys. Rev. Lett. 95 (2005) 081601 [hep-ex/0504049] [INSPIRE].

  70. C. Delaunay, C. Frugiuele, E. Fuchs and Y. Soreq, Probing new spin-independent interactions through precision spectroscopy in atoms with few electrons, Phys. Rev. D 96 (2017) 115002 [arXiv:1709.02817] [INSPIRE].

    ADS  Google Scholar 

  71. C. Delaunay, R. Ozeri, G. Perez and Y. Soreq, Probing Atomic Higgs-like Forces at the Precision Frontier, Phys. Rev. D 96 (2017) 093001 [arXiv:1601.05087] [INSPIRE].

    ADS  Google Scholar 

  72. C. Frugiuele, E. Fuchs, G. Perez and M. Schlaffer, Constraining New Physics Models with Isotope Shift Spectroscopy, Phys. Rev. D 96 (2017) 015011 [arXiv:1602.04822] [INSPIRE].

    ADS  Google Scholar 

  73. J.C. Berengut et al., Probing New Long-Range Interactions by Isotope Shift Spectroscopy, Phys. Rev. Lett. 120 (2018) 091801 [arXiv:1704.05068] [INSPIRE].

    ADS  Google Scholar 

  74. H.K. Dreiner, J.-F. Fortin, J. Isern and L. Ubaldi, White Dwarfs constrain Dark Forces, Phys. Rev. D 88 (2013) 043517 [arXiv:1303.7232] [INSPIRE].

    ADS  Google Scholar 

  75. M. Bauer, P. Foldenauer and J. Jaeckel, Hunting All the Hidden Photons, JHEP 07 (2018) 094 [arXiv:1803.05466] [INSPIRE].

    ADS  Google Scholar 

  76. P. Fayet, U-boson production in e+e− annihilations, psi and Upsilon decays and Light Dark Matter, Phys. Rev. D 75 (2007) 115017 [hep-ph/0702176] [INSPIRE].

    ADS  Google Scholar 

  77. W. Hollik, J.I. Illana, C. Schappacher, D. Stöckinger and S. Rigolin, Dipole form-factors and loop induced CP-violation in supersymmetry, hep-ph/9808408 [INSPIRE].

  78. W. Beenakker, S.C. van der Marck and W. Hollik, e+e− annihilation into heavy fermion pairs at high-energy colliders, Nucl. Phys. B 365 (1991) 24 [INSPIRE].

    ADS  Google Scholar 

  79. ACME collaboration, Improved limit on the electric dipole moment of the electron, Nature 562 (2018) 355 [INSPIRE].

  80. R. Gupta, B. Yoon, T. Bhattacharya, V. Cirigliano, Y.-C. Jang and H.-W. Lin, Flavor diagonal tensor charges of the nucleon from (2+1+1)-flavor lattice QCD, Phys. Rev. D 98 (2018) 091501 [arXiv:1808.07597] [INSPIRE].

    ADS  Google Scholar 

  81. J. Engel, M.J. Ramsey-Musolf and U. van Kolck, Electric Dipole Moments of Nucleons, Nuclei and Atoms: The Standard Model and Beyond, Prog. Part. Nucl. Phys. 71 (2013) 21 [arXiv:1303.2371] [INSPIRE].

    ADS  Google Scholar 

  82. A.J. Buras, Weak Hamiltonian, CP-violation and rare decays, in Probing the standard model of particle interactions. Proceedings, Summer School in Theoretical Physics, NATO Advanced Study Institute, 68th session, Les Houches, France, July 28 – September 5, 1997. Pt. 1, 2, pp. 281–539, 1998, hep-ph/9806471 [INSPIRE].

  83. A.J. Buras, D. Guadagnoli and G. Isidori, On 𝜖K Beyond Lowest Order in the Operator Product Expansion, Phys. Lett. B 688 (2010) 309 [arXiv:1002.3612] [INSPIRE].

    ADS  Google Scholar 

  84. UTfit collaboration, Model-independent constraints on ΔF = 2 operators and the scale of new physics, JHEP 03 (2008) 049 [arXiv:0707.0636] [INSPIRE].

  85. M. Ciuchini et al., ΔMK and 𝜖K in SUSY at the next-to-leading order, JHEP 10 (1998) 008 [hep-ph/9808328] [INSPIRE].

    ADS  Google Scholar 

  86. J. Charles et al., Current status of the Standard Model CKM fit and constraints on ΔF = 2 New Physics, Phys. Rev. D 91 (2015) 073007 [arXiv:1501.05013] [INSPIRE].

    ADS  Google Scholar 

  87. UTfit collaboration, http://www.utfit.org/UTfit/.

  88. Z. Ligeti and F. Sala, A new look at the theory uncertainty of 𝜖K, JHEP 09 (2016) 083 [Erratum ibid. 02 (2017) 140] [arXiv:1602.08494] [INSPIRE].

  89. M. Ciuchini et al., 2000 CKM triangle analysis: A critical review with updated experimental inputs and theoretical parameters, JHEP 07 (2001) 013 [hep-ph/0012308] [INSPIRE].

  90. A. Cerri et al., Opportunities in Flavour Physics at the HL-LHC and HE-LHC, arXiv:1812.07638 [INSPIRE].

  91. SINDRUM II collaboration, A search for muon to electron conversion in muonic gold, Eur. Phys. J. C 47 (2006) 337 [INSPIRE].

  92. R. Kitano, M. Koike and Y. Okada, Detailed calculation of lepton flavor violating muon electron conversion rate for various nuclei, Phys. Rev. D 66 (2002) 096002 [Erratum ibid. D 76 (2007) 059902] [hep-ph/0203110] [INSPIRE].

  93. Y. Kuno and Y. Okada, Muon decay and physics beyond the standard model, Rev. Mod. Phys. 73 (2001) 151 [hep-ph/9909265] [INSPIRE].

    ADS  Google Scholar 

  94. V. Cirigliano, S. Davidson and Y. Kuno, Spin-dependent μ → e conversion, Phys. Lett. B 771 (2017) 242 [arXiv:1703.02057] [INSPIRE].

    ADS  Google Scholar 

  95. J. Engel, M.T. Ressell, I.S. Towner and W.E. Ormand, Response of mica to weakly interacting massive particles, Phys. Rev. C 52 (1995) 2216 [hep-ph/9504322] [INSPIRE].

    ADS  Google Scholar 

  96. Mu2e collaboration, The Mu2e Experiment, Front. in Phys. 7 (2019) 1 [arXiv:1901.11099] [INSPIRE].

  97. J. Heeck, Lepton flavor violation with light vector bosons, Phys. Lett. B 758 (2016) 101 [arXiv:1602.03810] [INSPIRE].

    ADS  Google Scholar 

  98. SINDRUM collaboration, Search for the Decay μ+ → e+e+e− , Nucl. Phys. B 299 (1988) 1 [INSPIRE].

  99. Mu3e collaboration, The Rare and Forbidden: Testing Physics Beyond the Standard Model with Mu3e, SciPost Phys. Proc. 1 (2019) 052 [arXiv:1812.00741] [INSPIRE].

  100. K. Hayasaka et al., Search for Lepton Flavor Violating Tau Decays into Three Leptons with 719 Million Produced τ+τ− Pairs, Phys. Lett. B 687 (2010) 139 [arXiv:1001.3221] [INSPIRE].

    ADS  Google Scholar 

  101. Belle-II collaboration, The Belle II Physics Book, arXiv:1808.10567 [INSPIRE].

  102. L. Lavoura, General formulae for f1 → f2γ, Eur. Phys. J. C 29 (2003) 191 [hep-ph/0302221] [INSPIRE].

    ADS  Google Scholar 

  103. BaBar collaboration, Searches for Lepton Flavor Violation in the Decays τ± → e±γ and τ± → μ±γ, Phys. Rev. Lett. 104 (2010) 021802 [arXiv:0908.2381] [INSPIRE].

  104. MEG collaboration, Search for the lepton flavour violating decay μ+ → e+γ with the full dataset of the MEG experiment, Eur. Phys. J. C 76 (2016) 434 [arXiv:1605.05081] [INSPIRE].

  105. MEG II collaboration, The design of the MEG II experiment, Eur. Phys. J. C 78 (2018) 380 [arXiv:1801.04688] [INSPIRE].

  106. F. Sannino, J. Smirnov and Z.-W. Wang, Safe Clockwork, Phys. Rev. D 100 (2019) 075009 [arXiv:1902.05958] [INSPIRE].

    ADS  Google Scholar 

  107. B. Grinstein, S. Pokorski and G.G. Ross, Lepton non-universality in B decays and fermion mass structure, JHEP 12 (2018) 079 [arXiv:1809.01766] [INSPIRE].

    ADS  Google Scholar 

  108. J. Gasser and H. Leutwyler, Chiral Perturbation Theory: Expansions in the Mass of the Strange Quark, Nucl. Phys. B 250 (1985) 465 [INSPIRE].

    ADS  Google Scholar 

  109. G. Ecker, J. Gasser, A. Pich and E. de Rafael, The Role of Resonances in Chiral Perturbation Theory, Nucl. Phys. B 321 (1989) 311 [INSPIRE].

    ADS  Google Scholar 

  110. R. Urech, Virtual photons in chiral perturbation theory, Nucl. Phys. B 433 (1995) 234 [hep-ph/9405341] [INSPIRE].

    ADS  Google Scholar 

  111. H.H. Patel, Package-X: A Mathematica package for the analytic calculation of one-loop integrals, Comput. Phys. Commun. 197 (2015) 276 [arXiv:1503.01469] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia

    Aleks Smolkovič

  2. Department of Physics, University of Cincinnati, Cincinnati, Ohio, 45221, U.S.A.

    Michele Tammaro & Jure Zupan

Authors
  1. Aleks Smolkovič
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Michele Tammaro
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Jure Zupan
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Aleks Smolkovič.

Additional information

ArXiv ePrint: 1907.10063

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolkovič, A., Tammaro, M. & Zupan, J. Anomaly free Froggatt-Nielsen models of flavor. J. High Energ. Phys. 2019, 188 (2019). https://doi.org/10.1007/JHEP10(2019)188

Download citation

  • Received: 08 August 2019

  • Accepted: 02 October 2019

  • Published: 17 October 2019

  • DOI: https://doi.org/10.1007/JHEP10(2019)188

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Beyond Standard Model
  • Gauge Symmetry
  • Quark Masses and SM Parameters
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our imprints

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Cancel contracts here

Not affiliated

Springer Nature

© 2025 Springer Nature