Skip to main content

Shapes of gravity: tensor non-Gaussianity and massive spin-2 fields

A preprint version of the article is available at arXiv.

Abstract

If the graviton is the only high spin particle present during inflation, then the form of the observable tensor three-point function is fixed by de Sitter symmetry at leading order in slow-roll, regardless of the theory, to be a linear combination of two possible shapes. This is because there are only a fixed number of possible on-shell cubic structures through which the graviton can self-interact. If additional massive spin-2 degrees of freedom are present, more cubic interaction structures are possible, including those containing interactions between the new fields and the graviton, and self-interactions of the new fields. We study, in a model-independent way, how these interactions can lead to new shapes for the tensor bispectrum. In general, these shapes cannot be computed analytically, but for the case where the only new field is a partially massless spin-2 field we give simple expressions. It is possible for the contribution from additional spin-2 fields to be larger than the intrinsic Einstein gravity bispectrum and provides a mechanism for enhancing the size of the graviton bispectrum relative to the graviton power spectrum.

References

  1. J.M. Maldacena, Non-Gaussian features of primordial fluctuations in single field inflationary models, JHEP05 (2003) 013 [astro-ph/0210603] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  2. J.M. Maldacena and G.L. Pimentel, On graviton non-Gaussianities during inflation, JHEP09 (2011) 045 [arXiv:1104.2846] [INSPIRE].

    ADS  MATH  Google Scholar 

  3. X. Gao, T. Kobayashi, M. Yamaguchi and J. Yokoyama, Primordial non-Gaussianities of gravitational waves in the most general single-field inflation model, Phys. Rev. Lett.107 (2011) 211301 [arXiv:1108. 3513] [INSPIRE].

    ADS  Google Scholar 

  4. J. Soda, H. Kodama and M. Nozawa, Parity violation in graviton non-Gaussianity, JHEP08 (2011) 067 [arXiv:1106 .3228] [INSPIRE].

    ADS  MATH  Google Scholar 

  5. M. Shiraishi, D. Nitta and S. Yokoyama, Parity violation of gravitons in the CMB bispectrum, Frog. Theor. Phys.126 (2011) 937 [arXiv: 1108 . 0175] [INSPIRE].

    ADS  MATH  Google Scholar 

  6. E. Dimastrogiovanni, M. Fasiello and M. Kamionkowski, Imprints of massive primordial fields on large-scale structure, JCAP02 (2016) 017 [arXiv:1504.05993] [INSPIRE].

    ADS  Google Scholar 

  7. M. Biagetti, E. Dimastrogiovanni and M. Fasiello, Possible signatures of the inflationary particle content: spin-2 fields, JCAP10 (2017) 038 [arXiv: 1708 . 01587] [INSPIRE].

    ADS  Google Scholar 

  8. E. Dimastrogiovanni, M. Fasiello and G. Tasinato, Probing the inflationary particle content: extra spin-2field, JCAP08 (2018) 016 [arXiv:1806 . 00850] [INSPIRE].

    ADS  Google Scholar 

  9. E. Dimastrogiovanni, M. Fasiello, G. Tasinato and D. Wands, Tensor non-Gaussianities from non-minimal coupling to the inflaton, JCAP02 (2019) 008 [arXiv:1810 . 08866] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  10. LISA collaboration, Laser Interferometer Space Antenna, arXiv:1702.00786 [INSPIRE].

  11. P. Adshead and E.A. Lim, 3-pt statistics of cosmological stochastic gravitational waves, Phys. Rev.D 82 (2010) 024023 [arXiv:0912 .1615] [INSPIRE].

  12. N. Bartolo et al., Probing non-Gaussian stochastic gravitational wave backgrounds with LISA , JCAP11 (2018) 034 [arXiv:1806 . 02819] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  13. C. de Rham, G. Gabadadze and A.J. Tolley, Resummation of massive gravity, Phys. Rev. Lett.106 (2011) 231101 [arXiv:1011 . 1232] [INSPIRE].

    ADS  Google Scholar 

  14. K. Hinterbichler , Theoretical aspects of massive gravity, Rev. Mod . Phys.84 (2012) 671 [arXiv : 1105 .3735] [INSPIRE].

    ADS  Google Scholar 

  15. C. de Rham, Massive gravity, Living Rev. Rel17 (2014) 7 [arXiv:1401. 4173] [INSPIRE].

    MATH  Google Scholar 

  16. S.F. Hassan and R.A. Rosen, Bimetric gravity from ghost-free massive gravity, JHEP02 (2012) 126 [arXiv:1109 .3515] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  17. A. Schmidt-May and M. von Strauss, Recent developments in bimetric theory, J. Phys. A 49 (2016) 183001 [arXiv:1512.00021] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  18. K. Hinterbichler and R.A. Rosen, Interacting spin-2 fields, JHEP07 (2012) 047 [arXiv: 1203 .5783] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  19. A. Higuchi, Forbidden mass range for spin-2 field theory in de Sitter space-time, Nucl. Phys.B 282 (1987) 397 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. Yu.M. Zinoviev, On massive spin 2 interactions, Nucl. Phys.B 770 (2007) 83 [hep-th/0609170] [INSPIRE].

  21. S.F. Hassan, A. Schmidt-May and M. von Strauss, On partially massless bimetric gravity, Phys. Lett.B 726 (2013) 834 [arXiv: 1208 .1797] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  22. S.F. Hassan, A. Schmidt-May and M. von Strauss, Bimetric theory and partial masslessness with Lanczos-Lovelock terms in arbitrary dimensions, Class. Quant. Grav.30 (2013) 184010 [arXiv: 1212 .4525] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  23. C. de Rham and S. Renaux-Petel, Massive gravity on de Sitter and unique candidate for partially massless gravity, JCAP01 (2013) 035 [arXiv:1206.3482] [INSPIRE].

    MathSciNet  Google Scholar 

  24. S.F. Hassan, A. Schmidt-May and M. von Strauss, Higher derivative gravity and conformal gravity from bimetric and partially massless bimetric theory, Universe1 (2015) 92 [arXiv: 1303 .6940] [INSPIRE].

    ADS  Google Scholar 

  25. S. Deser, M. Sandora and A. Waldron, Nonlinear partially massless from massive gravity?, Phys. Rev.D 87 (2013) 101501 [arXiv:1301.5621] [INSPIRE].

  26. C. de Rham, K. Hinterbichler, R.A. Rosen and A.J. Tolley, Evidence for and obstructions to nonlinear partially massless gravity, Phys. Rev.D 88 (2013) 024003 [arXiv:1302. 0025] [INSPIRE].

  27. Yu. M. Zinoviev, Massive spin-2 in the Fradkin- Vasiliev formalism. I. Partially massless case, Nucl. Phys.B 886 (2014) 712 [arXiv:1405.4065] [INSPIRE].

  28. S. Garcia-Saenz and R.A. Rosen, A non-linear extension of the spin-2 partially massless symmetry, JHEP05 (2015) 042 [arXiv:1410.8734] [INSPIRE].

    ADS  MATH  Google Scholar 

  29. K. Hinterbichler, Manifest duality invariance for the partially massless graviton, Phys. Rev.D 91 (2015) 026008 [arXiv:1409.3565] [INSPIRE].

  30. E. Joung, W. Li and M. Taronna, No-go theorems for unitary and interacting partially massless spin-two fields, Phys. Rev. Lett.113 (2014) 091101 [arXiv:1406. 2335] [INSPIRE].

    ADS  Google Scholar 

  31. S. Alexandrov and C. Deffayet, On partially massless theory in 3 dimensions, JCAP03 (2015) 043 [arXiv:1410. 2897] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  32. S.F. Hassan, A. Schmidt-May and M. von Strauss, Extended Weyl invariance in a bimetric mod el and partial masslessness, Class. Quant. Grav.33 (2016) 015011 [arXiv:1507 .06540] [INSPIRE].

    ADS  MATH  Google Scholar 

  33. K. Hinterbichler and R.A. Rosen, Partially massless monopoles and charges, Phys. Rev.D 92 (2015) 105019 [arXiv:1507.00355] [INSPIRE].

  34. D. Cherney, S. Deser, A. Waldron and G. Zahariade, Non-linear duality invariant partially massless models ?, Phys. Lett.B 753 (2016) 293 [arXiv:1511. 01053] [INSPIRE].

    ADS  MATH  Google Scholar 

  35. S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow valley of colored ( anti) de Sitter gravity in three dimensions, JHEP04 (2016) 055 [arXiv: 1511.05220] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  36. S. Gwak, E. Joung, K. Mkrtchyan and S.-J. Rey, Rainbow vacua of colored higher-spin (A)dS3gravity, JHEP05 (2016) 150 [arXiv:1511.05975] [INSPIRE].

    ADS  MATH  Google Scholar 

  37. S. Garcia-Saenz, K. Hinterbichler, A. Joyce, E. Mitsou and R.A. Rosen, No-go for partially massless spin-2 Yang-Mills, JHEP02 (2016) 043 [arXiv:1511.03270] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  38. K. Hinterbichler and A. Joyce, Manifest duality for partially massless higher spins, JHEP09 (2016) 141 [arXiv:1608 . 04385] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  39. J. Bonifacio and K. Hinterbichler, Kaluza-Klein reduction of massive and partially massless spin-2fields, Phys. Rev.D 95 (2017) 024023 [arXiv:1611.00362] [INSPIRE].

  40. L. Apolo and S.F. Hassan, Non-linear partially massless symmetry in an 80(1, 5) continuation of conformal gravity, Class. Quant. Grav.34 (2017) 105005 [arXiv: 1609 .09514] [INSPIRE].

    ADS  MATH  Google Scholar 

  41. L. Apolo, S.F. Hassan and A. Lundkvist, Gauge and global symmetries of the candidate partially massless bimetric gravity, Phys. Rev.D 94 (2016) 124055 [arXiv: 1609 .09515] [INSPIRE].

  42. L. Bernard, C. Deffayet, K. Hinterbichler and M. von Strauss, Partially massless graviton on beyond Einstein spacetimes, Phys. Rev.D 95 (2017) 124036 [Erratum ibid.D 98 (2018) 069902] [arXiv:1703.02538] [INSPIRE].

  43. N. Boulanger, C. Deffayet, S. Garcia-Saenz and L. Traina, Consistent d e formations of free massive field theories in the Stueckelberg formulation, JHEP07 (2018) 021 [arXiv: 1806 .04695] [INSPIRE].

    ADS  MATH  Google Scholar 

  44. X. Bekaert and M. Grigoriev, Higher order singletons, partially massless fields and their boundary values in the ambient approach, Nucl. Phys.B 876 (2013) 667 [arXiv:1305 . 0162] [INSPIRE].

  45. T. Basile, X. Bekaert and N. Boulanger, Flato-Fronsdal theorem for higher-order singletons, JHEP11 (2014) 131 [arXiv:1410 . 7668] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  46. K.B. Alkalaev, M. Grigoriev and E.D. Skvortsov, Uniformizing higher-spin equations, J. Phys.A 48 (2015) 015401 [arXiv:1409 . 6507] [INSPIRE].

  47. E. Joung and K. Mkrtchyan, Partially-massless higher-spin algebras and their finite-dimensional truncations, JHEP01 (2016) 003 [arXiv:1508 . 07332] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  48. C. Brust and K. Hinterbichler, Partially massless higher-spin theory, JHEP02 (2017) 086 [arXiv: 1610 . 08510] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. E. Joung, L. Lopez and M. Taronna, On the cubic interactions of massive and partially-massless higher spins in ( A) dS, JHEP07 (2012) 041 [arXiv: 1203 .6578] [INSPIRE].

    ADS  Google Scholar 

  50. E. Joung, L. Lopez and M. Taronna, Generating functions of (partially- ) massless higher-spin cubic interactions, JHEP01 (2013) 168 [arXiv:1211.5912] [INSPIRE].

    ADS  Google Scholar 

  51. N. Arkani-Hamed and J. Maldacena, Cosmological collider physics, arXiv:1503 . 08043 [INSPIRE].

  52. H. Lee, D. Baumann and G.L. Pimentel, Non-Gaussianity as a particle detector, JHEP12 (2016) 040 [arXiv:1607. 03735] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. P. Creminelli, Conformal invariance of scalar perturbations in inflation, Phys. Rev.D 85 (2012) 041302 [arXiv:1108.0874] [INSPIRE].

  54. I. Antoniadis, P.O. Mazur and E. Mottola, Conformal invariance, dark energy and CMB non-Gaussianity, JCAP09 (2012) 024 [arXiv: 1103 .4164] [INSPIRE].

    ADS  Google Scholar 

  55. I. Mata, S. Raju and S. Trivedi, CMB from CFT, JHEP07 (2013) 015 [arXiv:1211.5482] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  56. A. Ghosh, N. Kundu, S. Raju and S.P. Trivedi, Conformal invariance and the four point scalar correlator in slow-roll inflation, JHEP07 (2014) 011 [arXiv: 1401.1426] [INSPIRE].

    ADS  Google Scholar 

  57. N. Kundu, A. Shukla and S.P. Trivedi, Constraints from conformal symmetry on the three point scalar correlator in inflation, JHEP04 (2015) 061 [arXiv:1410. 2606] [INSPIRE].

    ADS  Google Scholar 

  58. E. Pajer, G.L. Pimentel and J.V.S. Van Wijck, The conformal limit of inflation in the era of CMB polarimetry, JCAP06 (2017) 009 [arXiv:1609.06993] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  59. N. Arkani-Hamed, D. Baumann, H. Lee and G.L. Pimentel, The cosmological bootstrap: inflationary correlators from symmetries and singularities, ar Xiv:1811 . 00024 [INSPIRE].

  60. A. Bzowski, P. McFadden and K. Skenderis, Implications of conformal invariance in momentum space, JHEP03 (2014) 111 [arXiv:1304.7760] [INSPIRE].

    ADS  MATH  Google Scholar 

  61. A. Bzowski, P. McFadden and K. Skenderis, Scalar 3-point functions in CFT: renormalisation, /3-functions and anomalies, JHEP03 (2016) 066 [arXiv:1510.08442] [INSPIRE].

    ADS  Google Scholar 

  62. A. Bzowski, P. McFadden and K. Skenderis, Renormalised CFT 3-point functions of scalars, currents and stress tensors, JHEP11 (2018) 159 [arXiv:1805 .12100] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  63. H. Isono, T. Noumi and G. Shiu, Momentum space approach to crossing symmetric CFT correlators, JHEP07 (2018) 136 [arXiv:1805 .11107] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  64. D. Baumann, G. Goon, H. Lee and G.L. Pimentel, Partially massless fields during inflation, JHEP04 (2018) 140 [arXiv:1712. 06624] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  65. Planck collaboration, Planck 2018 results. X. Constraints on inflation, arXiv: 1807.06211 [INSPIRE].

  66. A. Higuchi, Linearized gravity in de Sitter space-time as a representation ofS0(4, 1), Class. Quant. Grav.8 (1991) 2005 [INSPIRE].

    ADS  Google Scholar 

  67. S. Deser and R.I. Nepomechie, Anomalous propagation of gauge fields in conformally fiat spaces, Phys. Lett.B 132 (1983) 321 [INSPIRE].

    ADS  Google Scholar 

  68. S. Deser and R.I. Nepomechie, Gauge invariance versus masslessness in de Sitter space, Annals Phys.154 (1984) 396 [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  69. L.H. Thomas, On unitary representations of the group of d e Sitter space, Ann. Math.42 (1941) 113.

    MathSciNet  MATH  Google Scholar 

  70. T.D. Newton, A note on the re presentations of the de Sitter group, Ann. Math.51 (1950) 730.

    MathSciNet  MATH  Google Scholar 

  71. T. Basile, X. Bekaert and N. Boulanger, Mixed-symmetry fields in de Sitter space: a group theoretical glance, JHEP 05 (2017) 081 [arXiv:1612.08166] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  72. A. Polishchuk, Massiv e symmetric tensor field on AdS, JHEP07 (1999) 007 [hep-th/9905048] [INSPIRE].

    ADS  Google Scholar 

  73. M.S. Costa, J. Penedones, D. Poland and S. Rychkov, Spinning conformal correlators, JHEP11 (2011) 071 [arXiv:1107.3554] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. P. Benincasa and F. Cachazo, Consistency conditions on the S-matrix of massless particles, arXiv:0705.4305 [INSPIRE].

  75. P. Kravchuk and D. Simmons-Duffin, Counting conformal correlators, JHEP02 (2018) 096 [arXiv: 1612 .08987] [INSPIRE].

    ADS  Google Scholar 

  76. K. Hinterbichler, A. Joyce and R.A. Rosen, Massive spin-2 scattering and asymptotic superluminality, JHEP03 (2018) 051 [arXiv: 1708 . 05716] [INSPIRE].

    ADS  MATH  Google Scholar 

  77. J. Bonifacio, K. Hinterbichler, A. Joyce and R.A. Rosen, Massive and massless spin-2 scattering and asymptotic superluminality, JHEP06 (2018) 075 [arXiv:1712 .10020] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  78. L. Hui, A. Joyce and S.S.C. Wong, Inflationary soft theorems revisited: a generalized consistency relation, JCAP02 (2019) 060 [arXiv: 1811. 05951] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  79. G.L. Pimentel, Inflationary consistency conditions from a wavefunctional perspective, JHEP02 (2014) 124 [arXiv:1309 . 1793] [INSPIRE].

    ADS  Google Scholar 

  80. S. Raju, New recursion relations and a fiat space limit for AdS/CFT correlators, Phys. Rev.D 85 (2012) 126009 [arXiv:1201.6449] [INSPIRE].

  81. N. Arkani-Hamed, P. Benincasa and A. Postnikov, Cosmological polytopes and the wave/unction of the universe, arXiv:1709.02813 [INSPIRE].

  82. R.C. Myers, Higher derivative gravity, surface terms and string theory, Phys. Rev.D 36 (1987) 392 [INSPIRE].

  83. X. Chen and Y. Wang, Quasi-single field inflation and non-Gaussianities, JCAP04 (2010) 027 [arXiv :0911. 3380] [INSPIRE].

    ADS  Google Scholar 

  84. V. Assassi, D. Baumann and D. Green, On soft limits of inflationary correlation functions, JCAP11 (2012) 047 [arXiv: 1204. 4207] [INSPIRE].

    ADS  Google Scholar 

  85. T. Noumi, M. Yamaguchi and D. Yokoyama, Effective field theory approach to quasi-single field inflation and effects of heavy fields, JHEP06 (2013) 051 [arXiv: 1211. 1624] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  86. L. Bordin, P. Creminelli, M. Mirbabayi and J. Noreña, Tensor squeezed limits and the Higuchi bound, JCAP09 (2016) 041 [arXiv:1605 . 08424] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  87. X.O. Camanho, J.D. Edelstein, J. Maldacena and A. Zhiboedov, Causality constraints on corrections to the graviton three-point coupling, JHEP02 (2016) 020 [arXiv: 1407 .5597] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  88. J.M. Martín-García, xAct, efficient tensor computer algebra for the Wolfram language, http:/ /www.xact.es/.

  89. D. Anninos and F. Denef, Cosmic clustering, JHEP06 (2016) 181 [arXiv:1111. 6061] [INSPIRE].

    ADS  Google Scholar 

  90. D. Anninos, T. Anous, D.Z. Freedman and G. Konstantinidis, Late-time structure of the Bunch-Davies de Sitter wave/unction, JCAP11 (2015) 048 [arXiv: 1406 .5490] [INSPIRE].

    ADS  Google Scholar 

  91. P. Benincasa, From the fiat-space S-matrix to the wave/unction of the universe, arXiv: 1811.02515 [INSPIRE].

  92. E. Joung and M. Taronna, Cubic interactions of massless higher spins in ( A ) dS: metric-like approach, Nucl. Phys.B 861 (2012) 145 [arXiv:1110. 5918] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  93. K. Skenderis, Lecture notes on holographic renormalization, Class. Quant. Grav.19 (2002) 5849 [hep-th/0209067] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  94. F. Arroja and T. Tanaka, A note on the role of the boundary terms for the non-Gaussianity in general k-inflation, JCAP05 (2011) 005 [arXiv:1103.1102] [INSPIRE].

    ADS  Google Scholar 

  95. C. Burrage, R.H. Ribeiro and D. Seery, Large slow-roll corrections to the bispectrum of noncanonical inflation, JCAP07 (2011) 032 [arXiv:1103. 4126] [INSPIRE].

    ADS  Google Scholar 

  96. D. Seery, Infrared effects in inflationary correlation functions, Class. Quant. Grav.27 (2010) 124005 [arXiv:1005 .1649] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  97. D. Seery and J.E. Lidsey, Non-Gaussian inflationary perturbations from the dS/CFT correspondence, JCAP06 (2006) 001 [astro-ph/0604209] [INSPIRE].

    ADS  Google Scholar 

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Austin Joyce.

Additional information

ArXiv ePrint: 1812.07571

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Goon, G., Hinterbichler, K., Joyce, A. et al. Shapes of gravity: tensor non-Gaussianity and massive spin-2 fields. J. High Energ. Phys. 2019, 182 (2019). https://doi.org/10.1007/JHEP10(2019)182

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/JHEP10(2019)182

Keywords

  • Classical Theories of Gravity
  • Conformal Field Theory
  • Effective Field Theories
  • Scattering Amplitudes