Abstract
We show that a noncommutative massless scalar probe can dress a naked singularity in AdS3 spacetime, consistent with the weak cosmic censorship. The dressing occurs at high energies, which is typical at the Planck scale. Using a noncommutative duality, we show that the dressed singularity has the geometry of a rotating BTZ black hole which satisfies all the laws of black hole thermodynamics. We calculate the entropy and the quasi-normal modes of the dressed singularity and show that the corresponding spacetime can be quantum mechanically complete. The noncommutative duality also gives rise to a light scalar, which can be relevant for early universe cosmology.
References
S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology, Proce. Roy. Soc. LondonA 314 (1970) 529.
R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE].
R. Penrose, Singularities and time-asymmetry, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge (1979).
R. Penrose, The question of cosmic censorship, J. Astrophys. Astron.20 (1999) 233 [INSPIRE].
S.W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. LondonA 314 (1970) 529.
A. Ashtekar, M. Bojowald and J. Lewandowski, Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys.7 (2003) 233 [gr-qc/0304074] [INSPIRE].
A. Ashtekar and M. Bojowald, Quantum geometry and the Schwarzschild singularity, Class. Quant. Grav.23 (2006) 391 [gr-qc/0509075] [INSPIRE].
M. Bojowald, Quantum geometry and its implications for black holes, Int. J. Mod. Phys.D 15 (2006) 1545 [gr-qc/0607130] [INSPIRE].
A. Yonika, G. Khanna and P. Singh, Von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole, Class. Quant. Grav.35 (2018) 045007 [arXiv:1709.06331] [INSPIRE].
S. Saini and P. Singh, Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski–Sachs spacetime, Class. Quant. Grav.33 (2016) 245019 [arXiv:1606.04932] [INSPIRE].
S.R. Das, String theory and cosmological singularities, Pramana69 (2007) 93.
S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE].
T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett.108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].
L. Bosma, B. Knorr and F. Saueressig, Resolving spacetime singularities within asymptotic safety, Phys. Rev. Lett.123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].
A. Saini and D. Stojković, Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse, Phys. Rev.D 89 (2014) 044003 [arXiv:1401.6182] [INSPIRE].
E. Greenwood and D. Stojkovic, Quantum gravitational collapse: Non-singularity and non-locality, JHEP06 (2008) 042 [arXiv:0802.4087] [INSPIRE].
J.E. Wang, E. Greenwood and D. Stojković, Schrödinger formalism, black hole horizons and singularity behavior, Phys. Rev.D 80 (2009) 124027 [arXiv:0906.3250] [INSPIRE].
G.T. Horowitz and D. Marolf, Quantum probes of space-time singularities, Phys. Rev.D 52 (1995) 5670 [gr-qc/9504028] [INSPIRE].
S. Hofmann and M. Schneider, Classical versus quantum completeness, Phys. Rev.D 91 (2015) 125028 [arXiv:1504.05580] [INSPIRE].
M. Reed and B. Simon, Fourier analysis, self-adjointness, Methods of Modern Mathematical Physics volume 2, Academic Press, New York U.S.A. (1975).
P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal.12 (1973) 401.
A. Ishibashi and A. Hosoya, Who’s afraid of naked singularities? Probing timelike singularities with finite energy waves, Phys. Rev.D 60 (1999) 104028 [gr-qc/9907009] [INSPIRE].
A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 2. General analysis of prescriptions for dynamics, Class. Quant. Grav.20 (2003) 3815 [gr-qc/0305012] [INSPIRE].
D.A. Konkowski, T.M. Helliwell and C. Wieland, Quantum singularity of Levi-Civita space-times, Class. Quant. Grav.21 (2004) 265 [gr-qc/0401009] [INSPIRE].
R.M. Wald, Note on the stability of the Schwarzschild metric, J. Math. Phys. 20 (1978) 1056 [Erratum ibid.21 (1980) 218].
R.M. Wald, Dynamics in nonglobally hyperbolic, static space-times, J. Math. Phys.21 (1980) 2802.
D.A. Konkowski and T.M. Helliwell, Understanding singularities — Classical and quantum, Int. J. Mod. Phys.A 31 (2016) 1641007.
M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].
M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].
C. Martinez and J. Zanelli, Back reaction of a conformal field on a three-dimensional black hole, Phys. Rev.D 55 (1997) 3642 [gr-qc/9610050] [INSPIRE].
M. Casals, A. Fabbri, C. Martínez and J. Zanelli, Quantum dress for a naked singularity, Phys. Lett.B 760 (2016) 244 [arXiv:1605.06078] [INSPIRE].
M. Casals, A. Fabbri, C. Martínez and J. Zanelli, Quantum backreaction onthree-dimensional black holes and naked singularities, Phys. Rev. Lett.118 (2017) 131102 [arXiv:1608.05366] [INSPIRE].
J.V. Rocha and V. Cardoso, Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime, Phys. Rev.D 83 (2011) 104037 [arXiv:1102.4352] [INSPIRE].
N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].
T. Crisford, G.T. Horowitz and J.E. Santos, Testing the weak gravity — Cosmic censorship connection, Phys. Rev.D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].
G.T. Horowitz and J.E. Santos, Further evidence for the weak gravity — Cosmic censorship connection, JHEP06 (2019) 122 [arXiv:1901.11096] [INSPIRE].
D.V. Ahluwalia, Quantum measurements, gravitation and locality, Phys. Lett.B 339 (1994) 301 [gr-qc/9308007] [INSPIRE].
S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett.B 331 (1994) 39 [INSPIRE].
S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys.172 (1995) 187.
M. Burić and J. Madore, Noncommutative de Sitter and FRW spaces, Eur. Phys. J.C 75 (2015) 502 [arXiv:1508.06058] [INSPIRE].
M. Burić and D. Latas, Discrete fuzzy de Sitter cosmology, Phys. Rev.D 100 (2019) 024053 [arXiv:1903.08378] [INSPIRE].
J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaŕe algebra, Phys. Lett.B 264 (1991) 331 [INSPIRE].
J. Lukierski and H. Ruegg, Quantum kappa Poincaŕe in any dimension, Phys. Lett.B 329 (1994) 189 [hep-th/9310117] [INSPIRE].
S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaŕe group and noncommutative geometry, Phys. Lett.B 334 (1994) 348 [hep-th/9405107] [INSPIRE].
P. Schupp and S. Solodukhin, Exact black hole solutions in noncommutative gravity, arXiv:0906.2724 [INSPIRE].
B.P. Dolan, K.S. Gupta and A. Stern, Noncommutative BTZ black hole and discrete time, Class. Quant. Grav.24 (2007) 1647 [hep-th/0611233] [INSPIRE].
B.P. Dolan, K.S. Gupta and A. Stern, Noncommutativity and quantum structure of spacetime, J. Phys. Conf. Ser.174 (2009) 012023 [INSPIRE].
T. Ohl and A. Schenkel, Cosmological and black hole spacetimes in twisted noncommutative gravity, JHEP10 (2009) 052 [arXiv:0906.2730] [INSPIRE].
J.P.M. Pitelli and P.S. Letelier, Quantum singularities in the BTZ spacetime, Phys. Rev.D 77 (2008) 124030 [arXiv:0805.3926] [INSPIRE].
M. Marcolli and E. Pierpaoli, Early universe models from noncommutative geometry, Adv. Theor. Math. Phys.14 (2010) 1373 [arXiv:0908.3683] [INSPIRE].
S. Alexander, R. Brandenberger and J. Magueijo, Noncommutative inflation, Phys. Rev.D 67 (2003) 081301 [hep-th/0108190] [INSPIRE].
T.S. Koivisto and D.F. Mota, CMB statistics in noncommutative inflation, JHEP02 (2011) 061 [arXiv:1011.2126] [INSPIRE].
S. Tsujikawa, Quintessence: a review, Class. Quant. Grav.30 (2013) 214003 [arXiv:1304.1961] [INSPIRE].
T. Jurić, Quantum space and quantum completeness, JHEP05 (2018) 007 [arXiv:1802.09873] [INSPIRE].
K.S. Gupta et al., Effects of noncommutativity on the black hole entropy, Adv. High Energy Phys.2014 (2014) 139172 [arXiv:1312.5100] [INSPIRE].
K.S. Guptae t al., Noncommutative scalar quasinormal modes and quantization of entropy of a BTZ black hole, JHEP09 (2015) 025 [arXiv:1505.04068] [INSPIRE].
T. Jurić and A. Samsarov, Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry, Phys. Rev.D 93 (2016) 104033 [arXiv:1602.01488] [INSPIRE].
K.S. Gupta, T. Jurić and A. Samsarov, Noncommutative duality and fermionic quasinormal modes of the BTZ black hole, JHEP06 (2017) 107 [arXiv:1703.00514] [INSPIRE].
S. Meljanac, A. Samsarov, M. Stojic and K.S. Gupta, Kappa-Minkowski space-time and the star product realizations, Eur. Phys. J.C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].
T.R. Govindarajan et al., Twisted statistics in kappa-Minkowski spacetime, Phys. Rev.D 77 (2008) 105010 [arXiv:0802.1576] [INSPIRE].
T. Juric, S. Meljanac and R. Strajn, Twists, realizations and Hopf algebroid structure of kappa-deformed phase space, Int. J. Mod. Phys.A 29 (2014) 1450022 [arXiv:1305.3088] [INSPIRE].
T. Juric, S. Meljanac and D. Pikutic, Realizations of κ-Minkowski space, Drinfeld twists and related symmetry algebras, Eur. Phys. J.C 75 (2015) 528 [arXiv:1506.04955] [INSPIRE].
D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence, Phys. Rev.D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].
S.-W. Kim, W.T. Kim, Y.-J. Park and H. Shin, Entropy of the BTZ black hole in (2 + 1)-dimensions, Phys. Lett.B 392 (1997) 311 [hep-th/9603043] [INSPIRE].
D.V. Singh and S. Siwach, Thermodynamics of BTZ black hole and entanglement entropy, J. Phys. Conf. Ser.481 (2014) 012014 [INSPIRE].
V. Cardoso and J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes, Phys. Rev.D 63 (2001) 124015 [gr-qc/0101052] [INSPIRE].
D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE].
D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Proceedings of the 1978 Stony Brook Conference on Riemann Surfaces and Related Topics, I. Kra and B. Maskit eds., Annals of Mathematics Studies volume 97, Princeton University Press, Princeton U.S.A. (1981).
C. McMullen, Riemann surfaces and the geometrization of 3-manifolds, Bull. Am. Math. Soc.27 (1992) 207.
C. McMullen, Iteration on Teichmüller space, Invent. Math.99 (1990) 425.
D. Birmingham, C. Kennedy, S. Sen and A. Wilkins, Geometrical finiteness, holography, and the Ban˜ados-Teitelboim-Zanelli black hole, Phys. Rev. Lett.82 (1999) 4164.
D. Birmingham, I. Sachs and S. Sen, Exact results for the BTZ black hole, Int. Jour. Mod. Phys.D 10 (2001) 833 [hep-th/0102155]. .
K.S. Gupta and S. Sen, Geometric finiteness and non-quasinormal modes of the BTZ black hole, Phys. Lett.B 618 (2005) 237 [hep-th/0504175] [INSPIRE].
R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).
N.R. Pantoja, H. Rago and R.O. Rodriguez, Curvature singularity of the distributional BTZ black hole geometry, J. Math. Phys.45 (2004) 1994 [gr-qc/0205094] [INSPIRE].
O. Unver and O. Gurtug, Quantum singularities in (2 + 1) dimensional matter coupled black hole spacetimes, Phys. Rev.D 82 (2010) 084016 [arXiv:1004.2572] [INSPIRE].
S.K. Chakrabarti, P.R. Giri and K.S. Gupta, Normal mode analysis for scalar fields in BTZ black hole background, Eur. Phys. J.60 (2009) 169 [arXiv:0807.2385] [INSPIRE].
J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP12 (1998) 005 [hep-th/9804085] [INSPIRE].
O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].
A.W. Peet, TASI lectures on black holes in string theory, in the proceedings of Strings, branes and gravity. Theoretical Advanced Study Institute (TASI’99), May 31–June 25, Boulder, U.S.A. (1999), hep-th/0008241 [INSPIRE].
M. Cvetič and F. Larsen, Statistical entropy of four-dimensional rotating black holes from near-horizon geometry, Phys. Rev. Lett.82 (1999) 484 [hep-th/9805146] [INSPIRE].
K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys.B 517 (1998) 179 [hep-th/9711138] [INSPIRE].
M.D. Ćirić, N. Konjik and A. Samsarov, Noncommutative scalar quasinormal modes of the Reissner-Nordström black hole, Class. Quant. Grav.35 (2018) 175005 [arXiv:1708.04066] [INSPIRE].
M.D. Ćirić, N. Konjik and A. Samsarov, Noncommutative scalar field in the non-extremal Reissner-Nordström background: QNM spectrum, arXiv:1904.04053 [INSPIRE].
T. Jurić et al., Some physical aspects of NC Reissner-Nordström black hole, in preparation.
Open Access
This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited
Author information
Authors and Affiliations
Corresponding author
Additional information
ArXiv ePrint: 1908.07402
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.
The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Gupta, K.S., Jurić, T., Samsarov, A. et al. Noncommutativity and the weak cosmic censorship. J. High Energ. Phys. 2019, 170 (2019). https://doi.org/10.1007/JHEP10(2019)170
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/JHEP10(2019)170
Keywords
- Black Holes
- Models of Quantum Gravity
- Non-Commutative Geometry
- Spacetime Singularities