Skip to main content

Advertisement

SpringerLink
  1. Home
  2. Journal of High Energy Physics
  3. Article
Noncommutativity and the weak cosmic censorship
Download PDF
Your article has downloaded

Similar articles being viewed by others

Slider with three articles shown per slide. Use the Previous and Next buttons to navigate the slides or the slide controller buttons at the end to navigate through each slide.

Strong cosmic censorship in near-extremal Kerr-Sen-de Sitter spacetime

02 November 2021

Ming Zhang & Jie Jiang

Investigations of strong cosmic censorship in 3-dimensional black strings

01 August 2022

Jeongwon Ho, Wontae Kim & Bum-Hoon Lee

Quasinormal modes and strong cosmic censorship in the regularised 4D Einstein–Gauss–Bonnet gravity

06 November 2020

Akash K. Mishra

Strong cosmic censorship in charged de sitter spacetime with scalar field non-minimally coupled to curvature

05 November 2019

Hong Guo, Hang Liu, … Bin Wang

Strong cosmic censorship in the BTZ black hole

04 June 2020

Roberto Emparan & Marija Tomašević

Strong cosmic censorship under quasinormal modes of non-minimally coupled massive scalar field

16 September 2019

Bogeun Gwak

Strong Cosmic Censorship in higher-dimensional Reissner-Nordström-de Sitter spacetime

28 March 2019

Hang Liu, Ziyu Tang, … Hongbao Zhang

Strong cosmic censorship for the massless Dirac field in the Reissner-Nordstrom-de Sitter spacetime

15 January 2019

Boxuan Ge, Jie Jiang, … Zhen Zhong

Holographic probes of inner horizons

08 June 2020

Vijay Balasubramanian, Arjun Kar & Gábor Sárosi

Download PDF
  • Regular Article - Theoretical Physics
  • Open Access
  • Published: 15 October 2019

Noncommutativity and the weak cosmic censorship

  • Kumar S. Gupta1,
  • Tajron Jurić2,
  • Andjelo Samsarov2 &
  • …
  • Ivica Smolić3 

Journal of High Energy Physics volume 2019, Article number: 170 (2019) Cite this article

  • 320 Accesses

  • 8 Citations

  • 1 Altmetric

  • Metrics details

A preprint version of the article is available at arXiv.

Abstract

We show that a noncommutative massless scalar probe can dress a naked singularity in AdS3 spacetime, consistent with the weak cosmic censorship. The dressing occurs at high energies, which is typical at the Planck scale. Using a noncommutative duality, we show that the dressed singularity has the geometry of a rotating BTZ black hole which satisfies all the laws of black hole thermodynamics. We calculate the entropy and the quasi-normal modes of the dressed singularity and show that the corresponding spacetime can be quantum mechanically complete. The noncommutative duality also gives rise to a light scalar, which can be relevant for early universe cosmology.

Download to read the full article text

Working on a manuscript?

Avoid the common mistakes

References

  1. S.W. Hawking, R. Penrose, The singularities of gravitational collapse and cosmology, Proce. Roy. Soc. LondonA 314 (1970) 529.

    ADS  MathSciNet  MATH  Google Scholar 

  2. R. Penrose, Gravitational collapse: the role of general relativity, Riv. Nuovo Cim.1 (1969) 252 [Gen. Rel. Grav.34 (2002) 1141] [INSPIRE].

  3. R. Penrose, Singularities and time-asymmetry, in General relativity: an Einstein centenary survey, S.W. Hawking and W. Israel eds., Cambridge University Press, Cambridge (1979).

  4. R. Penrose, The question of cosmic censorship, J. Astrophys. Astron.20 (1999) 233 [INSPIRE].

    ADS  Google Scholar 

  5. S.W. Hawking and R. Penrose, The singularities of gravitational collapse and cosmology, Proc. Roy. Soc. LondonA 314 (1970) 529.

    ADS  MathSciNet  MATH  Google Scholar 

  6. A. Ashtekar, M. Bojowald and J. Lewandowski, Mathematical structure of loop quantum cosmology, Adv. Theor. Math. Phys.7 (2003) 233 [gr-qc/0304074] [INSPIRE].

    MathSciNet  Google Scholar 

  7. A. Ashtekar and M. Bojowald, Quantum geometry and the Schwarzschild singularity, Class. Quant. Grav.23 (2006) 391 [gr-qc/0509075] [INSPIRE].

  8. M. Bojowald, Quantum geometry and its implications for black holes, Int. J. Mod. Phys.D 15 (2006) 1545 [gr-qc/0607130] [INSPIRE].

  9. A. Yonika, G. Khanna and P. Singh, Von-Neumann stability and singularity resolution in loop quantized Schwarzschild black hole, Class. Quant. Grav.35 (2018) 045007 [arXiv:1709.06331] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  10. S. Saini and P. Singh, Geodesic completeness and the lack of strong singularities in effective loop quantum Kantowski–Sachs spacetime, Class. Quant. Grav.33 (2016) 245019 [arXiv:1606.04932] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  11. S.R. Das, String theory and cosmological singularities, Pramana69 (2007) 93.

    ADS  Google Scholar 

  12. S.D. Mathur, The fuzzball proposal for black holes: an elementary review, Fortsch. Phys.53 (2005) 793 [hep-th/0502050] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  13. T. Biswas, E. Gerwick, T. Koivisto and A. Mazumdar, Towards singularity and ghost free theories of gravity, Phys. Rev. Lett.108 (2012) 031101 [arXiv:1110.5249] [INSPIRE].

    ADS  Google Scholar 

  14. L. Bosma, B. Knorr and F. Saueressig, Resolving spacetime singularities within asymptotic safety, Phys. Rev. Lett.123 (2019) 101301 [arXiv:1904.04845] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  15. A. Saini and D. Stojković, Nonlocal (but also nonsingular) physics at the last stages of gravitational collapse, Phys. Rev.D 89 (2014) 044003 [arXiv:1401.6182] [INSPIRE].

    ADS  Google Scholar 

  16. E. Greenwood and D. Stojkovic, Quantum gravitational collapse: Non-singularity and non-locality, JHEP06 (2008) 042 [arXiv:0802.4087] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  17. J.E. Wang, E. Greenwood and D. Stojković, Schrödinger formalism, black hole horizons and singularity behavior, Phys. Rev.D 80 (2009) 124027 [arXiv:0906.3250] [INSPIRE].

    ADS  Google Scholar 

  18. G.T. Horowitz and D. Marolf, Quantum probes of space-time singularities, Phys. Rev.D 52 (1995) 5670 [gr-qc/9504028] [INSPIRE].

  19. S. Hofmann and M. Schneider, Classical versus quantum completeness, Phys. Rev.D 91 (2015) 125028 [arXiv:1504.05580] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  20. M. Reed and B. Simon, Fourier analysis, self-adjointness, Methods of Modern Mathematical Physics volume 2, Academic Press, New York U.S.A. (1975).

  21. P.R. Chernoff, Essential self-adjointness of powers of generators of hyperbolic equations, J. Funct. Anal.12 (1973) 401.

    MathSciNet  MATH  Google Scholar 

  22. A. Ishibashi and A. Hosoya, Who’s afraid of naked singularities? Probing timelike singularities with finite energy waves, Phys. Rev.D 60 (1999) 104028 [gr-qc/9907009] [INSPIRE].

  23. A. Ishibashi and R.M. Wald, Dynamics in nonglobally hyperbolic static space-times. 2. General analysis of prescriptions for dynamics, Class. Quant. Grav.20 (2003) 3815 [gr-qc/0305012] [INSPIRE].

  24. D.A. Konkowski, T.M. Helliwell and C. Wieland, Quantum singularity of Levi-Civita space-times, Class. Quant. Grav.21 (2004) 265 [gr-qc/0401009] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  25. R.M. Wald, Note on the stability of the Schwarzschild metric, J. Math. Phys. 20 (1978) 1056 [Erratum ibid.21 (1980) 218].

  26. R.M. Wald, Dynamics in nonglobally hyperbolic, static space-times, J. Math. Phys.21 (1980) 2802.

    ADS  MathSciNet  Google Scholar 

  27. D.A. Konkowski and T.M. Helliwell, Understanding singularities — Classical and quantum, Int. J. Mod. Phys.A 31 (2016) 1641007.

    ADS  MathSciNet  MATH  Google Scholar 

  28. M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time, Phys. Rev. Lett.69 (1992) 1849 [hep-th/9204099] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  29. M. Bañados, M. Henneaux, C. Teitelboim and J. Zanelli, Geometry of the (2 + 1) black hole, Phys. Rev.D 48 (1993) 1506 [Erratum ibid.D 88 (2013) 069902] [gr-qc/9302012] [INSPIRE].

  30. C. Martinez and J. Zanelli, Back reaction of a conformal field on a three-dimensional black hole, Phys. Rev.D 55 (1997) 3642 [gr-qc/9610050] [INSPIRE].

  31. M. Casals, A. Fabbri, C. Martínez and J. Zanelli, Quantum dress for a naked singularity, Phys. Lett.B 760 (2016) 244 [arXiv:1605.06078] [INSPIRE].

    ADS  MATH  Google Scholar 

  32. M. Casals, A. Fabbri, C. Martínez and J. Zanelli, Quantum backreaction onthree-dimensional black holes and naked singularities, Phys. Rev. Lett.118 (2017) 131102 [arXiv:1608.05366] [INSPIRE].

    ADS  Google Scholar 

  33. J.V. Rocha and V. Cardoso, Gravitational perturbation of the BTZ black hole induced by test particles and weak cosmic censorship in AdS spacetime, Phys. Rev.D 83 (2011) 104037 [arXiv:1102.4352] [INSPIRE].

    ADS  Google Scholar 

  34. N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, The string landscape, black holes and gravity as the weakest force, JHEP06 (2007) 060 [hep-th/0601001] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  35. T. Crisford, G.T. Horowitz and J.E. Santos, Testing the weak gravity — Cosmic censorship connection, Phys. Rev.D 97 (2018) 066005 [arXiv:1709.07880] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  36. G.T. Horowitz and J.E. Santos, Further evidence for the weak gravity — Cosmic censorship connection, JHEP06 (2019) 122 [arXiv:1901.11096] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  37. D.V. Ahluwalia, Quantum measurements, gravitation and locality, Phys. Lett.B 339 (1994) 301 [gr-qc/9308007] [INSPIRE].

  38. S. Doplicher, K. Fredenhagen and J.E. Roberts, Space-time quantization induced by classical gravity, Phys. Lett.B 331 (1994) 39 [INSPIRE].

    ADS  Google Scholar 

  39. S. Doplicher, K. Fredenhagen and J.E. Roberts, The quantum structure of spacetime at the Planck scale and quantum fields, Commun. Math. Phys.172 (1995) 187.

    ADS  MathSciNet  MATH  Google Scholar 

  40. M. Burić and J. Madore, Noncommutative de Sitter and FRW spaces, Eur. Phys. J.C 75 (2015) 502 [arXiv:1508.06058] [INSPIRE].

  41. M. Burić and D. Latas, Discrete fuzzy de Sitter cosmology, Phys. Rev.D 100 (2019) 024053 [arXiv:1903.08378] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  42. J. Lukierski, H. Ruegg, A. Nowicki and V.N. Tolstoi, Q deformation of Poincaŕe algebra, Phys. Lett.B 264 (1991) 331 [INSPIRE].

    ADS  Google Scholar 

  43. J. Lukierski and H. Ruegg, Quantum kappa Poincaŕe in any dimension, Phys. Lett.B 329 (1994) 189 [hep-th/9310117] [INSPIRE].

    ADS  Google Scholar 

  44. S. Majid and H. Ruegg, Bicrossproduct structure of kappa Poincaŕe group and noncommutative geometry, Phys. Lett.B 334 (1994) 348 [hep-th/9405107] [INSPIRE].

    ADS  MATH  Google Scholar 

  45. P. Schupp and S. Solodukhin, Exact black hole solutions in noncommutative gravity, arXiv:0906.2724 [INSPIRE].

  46. B.P. Dolan, K.S. Gupta and A. Stern, Noncommutative BTZ black hole and discrete time, Class. Quant. Grav.24 (2007) 1647 [hep-th/0611233] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  47. B.P. Dolan, K.S. Gupta and A. Stern, Noncommutativity and quantum structure of spacetime, J. Phys. Conf. Ser.174 (2009) 012023 [INSPIRE].

    Google Scholar 

  48. T. Ohl and A. Schenkel, Cosmological and black hole spacetimes in twisted noncommutative gravity, JHEP10 (2009) 052 [arXiv:0906.2730] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  49. J.P.M. Pitelli and P.S. Letelier, Quantum singularities in the BTZ spacetime, Phys. Rev.D 77 (2008) 124030 [arXiv:0805.3926] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  50. M. Marcolli and E. Pierpaoli, Early universe models from noncommutative geometry, Adv. Theor. Math. Phys.14 (2010) 1373 [arXiv:0908.3683] [INSPIRE].

    MathSciNet  MATH  Google Scholar 

  51. S. Alexander, R. Brandenberger and J. Magueijo, Noncommutative inflation, Phys. Rev.D 67 (2003) 081301 [hep-th/0108190] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  52. T.S. Koivisto and D.F. Mota, CMB statistics in noncommutative inflation, JHEP02 (2011) 061 [arXiv:1011.2126] [INSPIRE].

    ADS  MATH  Google Scholar 

  53. S. Tsujikawa, Quintessence: a review, Class. Quant. Grav.30 (2013) 214003 [arXiv:1304.1961] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  54. T. Jurić, Quantum space and quantum completeness, JHEP05 (2018) 007 [arXiv:1802.09873] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  55. K.S. Gupta et al., Effects of noncommutativity on the black hole entropy, Adv. High Energy Phys.2014 (2014) 139172 [arXiv:1312.5100] [INSPIRE].

    MATH  Google Scholar 

  56. K.S. Guptae t al., Noncommutative scalar quasinormal modes and quantization of entropy of a BTZ black hole, JHEP09 (2015) 025 [arXiv:1505.04068] [INSPIRE].

  57. T. Jurić and A. Samsarov, Entanglement entropy renormalization for the noncommutative scalar field coupled to classical BTZ geometry, Phys. Rev.D 93 (2016) 104033 [arXiv:1602.01488] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  58. K.S. Gupta, T. Jurić and A. Samsarov, Noncommutative duality and fermionic quasinormal modes of the BTZ black hole, JHEP06 (2017) 107 [arXiv:1703.00514] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  59. S. Meljanac, A. Samsarov, M. Stojic and K.S. Gupta, Kappa-Minkowski space-time and the star product realizations, Eur. Phys. J.C 53 (2008) 295 [arXiv:0705.2471] [INSPIRE].

    ADS  MATH  Google Scholar 

  60. T.R. Govindarajan et al., Twisted statistics in kappa-Minkowski spacetime, Phys. Rev.D 77 (2008) 105010 [arXiv:0802.1576] [INSPIRE].

    ADS  Google Scholar 

  61. T. Juric, S. Meljanac and R. Strajn, Twists, realizations and Hopf algebroid structure of kappa-deformed phase space, Int. J. Mod. Phys.A 29 (2014) 1450022 [arXiv:1305.3088] [INSPIRE].

    ADS  MATH  Google Scholar 

  62. T. Juric, S. Meljanac and D. Pikutic, Realizations of κ-Minkowski space, Drinfeld twists and related symmetry algebras, Eur. Phys. J.C 75 (2015) 528 [arXiv:1506.04955] [INSPIRE].

    ADS  Google Scholar 

  63. D. Birmingham, Choptuik scaling and quasinormal modes in the AdS/CFT correspondence, Phys. Rev.D 64 (2001) 064024 [hep-th/0101194] [INSPIRE].

    ADS  Google Scholar 

  64. S.-W. Kim, W.T. Kim, Y.-J. Park and H. Shin, Entropy of the BTZ black hole in (2 + 1)-dimensions, Phys. Lett.B 392 (1997) 311 [hep-th/9603043] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  65. D.V. Singh and S. Siwach, Thermodynamics of BTZ black hole and entanglement entropy, J. Phys. Conf. Ser.481 (2014) 012014 [INSPIRE].

    Google Scholar 

  66. V. Cardoso and J.P.S. Lemos, Scalar, electromagnetic and Weyl perturbations of BTZ black holes: Quasinormal modes, Phys. Rev.D 63 (2001) 124015 [gr-qc/0101052] [INSPIRE].

  67. D. Birmingham, I. Sachs and S.N. Solodukhin, Conformal field theory interpretation of black hole quasinormal modes, Phys. Rev. Lett.88 (2002) 151301 [hep-th/0112055] [INSPIRE].

    ADS  MathSciNet  Google Scholar 

  68. D. Sullivan, On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions, in Proceedings of the 1978 Stony Brook Conference on Riemann Surfaces and Related Topics, I. Kra and B. Maskit eds., Annals of Mathematics Studies volume 97, Princeton University Press, Princeton U.S.A. (1981).

  69. C. McMullen, Riemann surfaces and the geometrization of 3-manifolds, Bull. Am. Math. Soc.27 (1992) 207.

    MathSciNet  MATH  Google Scholar 

  70. C. McMullen, Iteration on Teichmüller space, Invent. Math.99 (1990) 425.

    ADS  MathSciNet  MATH  Google Scholar 

  71. D. Birmingham, C. Kennedy, S. Sen and A. Wilkins, Geometrical finiteness, holography, and the Ban˜ados-Teitelboim-Zanelli black hole, Phys. Rev. Lett.82 (1999) 4164.

    ADS  MathSciNet  MATH  Google Scholar 

  72. D. Birmingham, I. Sachs and S. Sen, Exact results for the BTZ black hole, Int. Jour. Mod. Phys.D 10 (2001) 833 [hep-th/0102155]. .

  73. K.S. Gupta and S. Sen, Geometric finiteness and non-quasinormal modes of the BTZ black hole, Phys. Lett.B 618 (2005) 237 [hep-th/0504175] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  74. R.M. Wald, General relativity, University of Chicago Press, Chicago U.S.A. (1984).

  75. N.R. Pantoja, H. Rago and R.O. Rodriguez, Curvature singularity of the distributional BTZ black hole geometry, J. Math. Phys.45 (2004) 1994 [gr-qc/0205094] [INSPIRE].

  76. O. Unver and O. Gurtug, Quantum singularities in (2 + 1) dimensional matter coupled black hole spacetimes, Phys. Rev.D 82 (2010) 084016 [arXiv:1004.2572] [INSPIRE].

    ADS  Google Scholar 

  77. S.K. Chakrabarti, P.R. Giri and K.S. Gupta, Normal mode analysis for scalar fields in BTZ black hole background, Eur. Phys. J.60 (2009) 169 [arXiv:0807.2385] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  78. J.M. Maldacena and A. Strominger, AdS3 black holes and a stringy exclusion principle, JHEP12 (1998) 005 [hep-th/9804085] [INSPIRE].

    ADS  MATH  Google Scholar 

  79. O. Aharony et al., Large N field theories, string theory and gravity, Phys. Rept.323 (2000) 183 [hep-th/9905111] [INSPIRE].

    ADS  MathSciNet  MATH  Google Scholar 

  80. A.W. Peet, TASI lectures on black holes in string theory, in the proceedings of Strings, branes and gravity. Theoretical Advanced Study Institute (TASI’99), May 31–June 25, Boulder, U.S.A. (1999), hep-th/0008241 [INSPIRE].

  81. M. Cvetič and F. Larsen, Statistical entropy of four-dimensional rotating black holes from near-horizon geometry, Phys. Rev. Lett.82 (1999) 484 [hep-th/9805146] [INSPIRE].

    ADS  Google Scholar 

  82. K. Sfetsos and K. Skenderis, Microscopic derivation of the Bekenstein-Hawking entropy formula for nonextremal black holes, Nucl. Phys.B 517 (1998) 179 [hep-th/9711138] [INSPIRE].

    ADS  MATH  Google Scholar 

  83. M.D. Ćirić, N. Konjik and A. Samsarov, Noncommutative scalar quasinormal modes of the Reissner-Nordström black hole, Class. Quant. Grav.35 (2018) 175005 [arXiv:1708.04066] [INSPIRE].

    ADS  MATH  Google Scholar 

  84. M.D. Ćirić, N. Konjik and A. Samsarov, Noncommutative scalar field in the non-extremal Reissner-Nordström background: QNM spectrum, arXiv:1904.04053 [INSPIRE].

  85. T. Jurić et al., Some physical aspects of NC Reissner-Nordström black hole, in preparation.

Download references

Open Access

This article is distributed under the terms of the Creative Commons Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in any medium, provided the original author(s) and source are credited

Author information

Authors and Affiliations

  1. Theory Division, Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Calcutta, 700064, India

    Kumar S. Gupta

  2. Rudjer Bošković Institute, Bijenička c.54, HR-10002, Zagreb, Croatia

    Tajron Jurić & Andjelo Samsarov

  3. Department of Physics, Faculty of Science, University of Zagreb, 10000, Zagreb, Croatia

    Ivica Smolić

Authors
  1. Kumar S. Gupta
    View author publications

    You can also search for this author in PubMed Google Scholar

  2. Tajron Jurić
    View author publications

    You can also search for this author in PubMed Google Scholar

  3. Andjelo Samsarov
    View author publications

    You can also search for this author in PubMed Google Scholar

  4. Ivica Smolić
    View author publications

    You can also search for this author in PubMed Google Scholar

Corresponding author

Correspondence to Tajron Jurić.

Additional information

ArXiv ePrint: 1908.07402

Rights and permissions

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made.

The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.

To view a copy of this licence, visit https://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gupta, K.S., Jurić, T., Samsarov, A. et al. Noncommutativity and the weak cosmic censorship. J. High Energ. Phys. 2019, 170 (2019). https://doi.org/10.1007/JHEP10(2019)170

Download citation

  • Received: 03 September 2019

  • Accepted: 30 September 2019

  • Published: 15 October 2019

  • DOI: https://doi.org/10.1007/JHEP10(2019)170

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • Black Holes
  • Models of Quantum Gravity
  • Non-Commutative Geometry
  • Spacetime Singularities
Download PDF

Working on a manuscript?

Avoid the common mistakes

Advertisement

Over 10 million scientific documents at your fingertips

Switch Edition
  • Academic Edition
  • Corporate Edition
  • Home
  • Impressum
  • Legal information
  • Privacy statement
  • California Privacy Statement
  • How we use cookies
  • Manage cookies/Do not sell my data
  • Accessibility
  • FAQ
  • Contact us
  • Affiliate program

Not affiliated

Springer Nature

© 2023 Springer Nature Switzerland AG. Part of Springer Nature.